Question \#50128, Math, Complex Analysis
The formula $\sum_{n \geq 0} w^{n}=\frac{1}{1-w}$, for $|z|<1$ will be used for $w=-z^{2}$:

$$
\sum_{n \geq 2}(-1)^{n} z^{2 n+3}=z^{7}(-1)^{2} \sum_{n \geq 0}(-1)^{n} z^{2 n}=z^{7} \frac{1}{1+z^{2}}
$$

The power series $\sum_{n \geq 2}(-1)^{n} i^{2 n i} i^{3 i}$ has the terms

$$
(-1)^{n} i^{2 n i} i^{3 i}=(-1)^{n}\left(e^{i \pi / 2}\right)^{2 n i}\left(e^{i \pi / 2}\right)^{3 i}=\left(-e^{-\pi}\right)^{n} e^{-1.5 \pi}
$$

So, for $w=-e^{-\pi}$ and first formula

$$
\sum_{n \geq 2}(-1)^{n} i^{2 n i} i^{3 i}=e^{-1.5 \pi} e^{-2 \pi} \sum_{n \geq 0}\left(-e^{-\pi}\right)^{n}=e^{-3.5 \pi} \sum_{n \geq 0} w^{n}=\frac{e^{-3.5 \pi}}{1-w}=\frac{e^{-3.5 \pi}}{1+e^{-\pi}}=\frac{e^{-2.5 \pi}}{e^{\pi}+1}
$$

