Answer on Question \#50076 - Math - Combinatorics | Number Theory

Seven bandits collected a number of gold coins. They are very worry about dividing the coins. After dividing the coins between them the first time, they found
2 coins remaining. They fought about these coins and 3 bandits died. They divided
the coins again and saw that 2 coin remains. Again they fought and another bandit
died. Now they could equally distribute the coins. At least how many gold coins were there?

Solution

The answer is 30 , because this number satisfies all conditions of the problem
(30-2 $=28$ is divisible both by 7 and by 4 , moreover, 30 is divisible by 3).
It is the least number n (because $n=2$ does not satisfy a condition on equally distributed coins among 3 bandits: n is divisible by 3) such that $n-2$ is divisible both by 7 and by 4 , because $n-2$ must take the form $7 * 4 * k=28 k$.

