Answer on Question \#50075 - Math - Combinatorics | Number Theory

Task:

Now you are in 1st floor. You have to go 6th floor. You are able to cross three floors at a stretch. Then you need to eat a chocolate. There are 3 chocolates for you in 2, 3 and $5^{\text {th }}$ floor. How many different ways you can go $6^{\text {th }}$ floor?

Solution:

After crossing three floors a person needs to eat a chocolate. There are only 2 ways to go 6th floor. I will try to explain it by means of schemes where the figure indicates the number of floors:

- From $1^{\text {st }}$ floor to $2^{\text {nd }}$ floor, then from $2^{\text {nd }}$ floor to $3^{\text {rd }}$, then from $3^{\text {rd }}$ to $2^{\text {nd }}$ floor, then you need to eat a chocolate, then from $2^{\text {nd }}$ floor to $3^{\text {rd }}$ floor, then from $3^{\text {rd }}$ floor to $4^{\text {th }}$,then from $4^{\text {th }}$ to $5^{\text {th }}$ floor, then you need to eat a chocolate and go $6^{\text {th }}$ floor;
- From $1^{\text {st }}$ floor to $2^{\text {nd }}$ floor, then from $2^{\text {nd }}$ floor to $1^{\text {st }}$, then from $1^{\text {st }}$ to $2^{\text {nd }}$ floor, then you need to eat a chocolate, then from $2^{\text {nd }}$ floor to $3^{\text {rd }}$ floor, then from $3^{\text {rd }}$ floor to $4^{\text {th }}$, then from $4^{\text {th }}$ to $5^{\text {th }}$ floor,then you need to eat a chocolate and go $6^{\text {th }}$ floor.

