Answer on Question #49851 – Mathematics – Calculus

Question:

The gamma function of (-1) and of (0)?

Solution:

The Gamma function can be defined as an improper integral

$$\Gamma(\alpha) = \int_0^{+\infty} t^{\alpha - 1} e^{-t} dt.$$
(1)

This formula is valid for Re α >0. For Re α <0 and 1-Re α >0 the function $\Gamma(z)$ can be calculated by the formula

$$\Gamma(\alpha) = \frac{\pi}{\sin(\pi \cdot \alpha) \cdot \Gamma(1 - \alpha)}.$$
(2)

As we see, for integer $\text{Re}\alpha \leq 0$ the multiplier $\sin(\pi \cdot \alpha) = 0$ and the Gamma function is discontinuous (fig1.). So, $\alpha = -n$, n=0, 1, 2... are the points of discontinuity for $\Gamma(\alpha)$.

Fig 1. The gamma function of the real argument

Therefore, the Gamma function is continuous everywhere (for $Re\alpha > 0$ and for $Re\alpha < 0$) except $\alpha = -n$, where $n \in Z$. Using the reduction formula for Gamma function

$$\Gamma(\alpha) = \frac{\Gamma(\alpha+1)}{\alpha}.$$
(3)

we can write

$$\Gamma(+0) = \lim_{\alpha \to +0} \Gamma(\alpha) = \lim_{\alpha \to +0} \frac{\Gamma(\alpha+1)}{\alpha} = \frac{\Gamma(1)}{\lim_{\alpha \to +0} \alpha} = \frac{1}{\lim_{\alpha \to +0} \alpha} = +\infty;$$

$$\Gamma(-0) = \lim_{\alpha \to -0} \Gamma(\alpha) = \lim_{\alpha \to -0} \frac{\Gamma(\alpha+1)}{\alpha} = \frac{\Gamma(1)}{\lim_{\alpha \to -0} \alpha} = \frac{1}{\lim_{\alpha \to -0} \alpha} = -\infty;$$

$$\Gamma(-1+0) = \lim_{\alpha \to -1+0} \Gamma(\alpha) = \lim_{\alpha \to -1+0} \frac{\Gamma(\alpha+1)}{\alpha} = \frac{\Gamma(+0)}{-1} = -\infty;$$

$$\Gamma(-1-0) = \lim_{\alpha \to -1-0} \Gamma(\alpha) = \lim_{\alpha \to -1-0} \frac{\Gamma(\alpha+1)}{\alpha} = \frac{\Gamma(-0)}{-1} = +\infty$$

and so on.

You can also look at our video on this topic:

https://www.youtube.com/watch?v=yu9k2iPta-k

Answer: α =-1 and α =0 are the points of discontinuity for $\Gamma(\alpha)$.

www.AssignmentExpert.com