Answer on Question \#49851 - Mathematics - Calculus

Question:

The gamma function of(-1) and of (0)?

Solution:

The Gamma function can be defined as an improper integral

$$
\begin{equation*}
\Gamma(\alpha)=\int_{0}^{+\infty} t^{\alpha-1} e^{-t} d t \tag{1}
\end{equation*}
$$

This formula is valid for $\operatorname{Re} \alpha>0$. For $\operatorname{Re} \alpha<0$ and 1-Re $\alpha>0$ the function $\Gamma(z)$ can be calculated by the formula

$$
\begin{equation*}
\Gamma(\alpha)=\frac{\pi}{\sin (\pi \cdot \alpha) \cdot \Gamma(1-\alpha)} \tag{2}
\end{equation*}
$$

As we see, for integer $\operatorname{Re} \alpha \leq 0$ the multiplier $\sin (\pi \cdot \alpha)=0$ and the Gamma function is discontinuous (fig1.). So, $\alpha=-n, n=0,1,2 \ldots$ are the points of discontinuity for $\Gamma(\alpha)$.

Fig 1. The gamma function of the real argument
Therefore, the Gamma function is continuous everywhere (for $\operatorname{Re} \alpha>0$ and for $\operatorname{Re\alpha }<0$) except $\alpha=-n$, where $\mathrm{n} \in \mathrm{Z}$. Using the reduction formula for Gamma function

$$
\begin{equation*}
\Gamma(\alpha)=\frac{\Gamma(\alpha+1)}{\alpha} . \tag{3}
\end{equation*}
$$

we can write

$$
\begin{gathered}
\Gamma(+0)=\lim _{\alpha \rightarrow+0} \Gamma(\alpha)=\lim _{\alpha \rightarrow+0} \frac{\Gamma(\alpha+1)}{\alpha}=\frac{\Gamma(1)}{\lim _{\alpha \rightarrow+0} \alpha}=\frac{1}{\lim _{\alpha \rightarrow+0} \alpha}=+\infty ; \\
\Gamma(-0)=\lim _{\alpha \rightarrow-0} \Gamma(\alpha)=\lim _{\alpha \rightarrow-0} \frac{\Gamma(\alpha+1)}{\alpha}=\frac{\Gamma(1)}{\lim _{\alpha \rightarrow-0} \alpha}=\frac{1}{\lim _{\alpha \rightarrow-0} \alpha}=-\infty ; \\
\Gamma(-1+0)=\lim _{\alpha \rightarrow-1+0} \Gamma(\alpha)=\lim _{\alpha \rightarrow-1+0} \frac{\Gamma(\alpha+1)}{\alpha}=\frac{\Gamma(+0)}{-1}-\cdots ; \\
\Gamma(-1-0)=\lim _{\alpha \rightarrow-1-0} \Gamma(\alpha)=\lim _{\alpha \rightarrow-1-0} \frac{\Gamma(\alpha+1)}{\alpha}=\frac{\Gamma(-0)}{-1}=+\infty
\end{gathered}
$$

and so on.
You can also look at our video on this topic:
https://www.youtube.com/watch?v=yu9k2iPta-k
Answer: $\alpha=-1$ and $\alpha=0$ are the points of discontinuity for $\Gamma(\alpha)$.

