Answer on Question #49818 - Math - Statistics and Probability

Five people who were convicted of speeding were ordered by the court to attend a workshop. A special device placed in their cars kept a record of their speeds for 2 weeks before and after the workshop. The maximum speeds for each person during the 2 weeks before and the 2 weeks after the workshop follow:

Participant Before After

L. B.	65	58
-------	----	----

Using the .05 significance level, should we conclude that people are likely to drive more slowly after this workshop? Use hypothesis testing.

Solution

$$n = n_1 = n_2 = 5.$$

The mean difference is

$$\bar{d} = \overline{(x_a - x_b)} = \frac{\sum (x_a - x_b)}{n} = \frac{(58 - 65) + (65 - 62) + (56 - 60) + (66 - 70) + (60 - 68)}{5} = -4.$$

Sample standard deviation of difference is

$$\sum (x_a - x_b)^2 = (58 - 65)^2 + (65 - 62)^2 + (56 - 60)^2 + (66 - 70)^2 + (60 - 68)^2 = 154$$

$$s_d = \sqrt{\frac{\sum (x_a - x_b)^2 - n\bar{d}^2}{n - 1}} = \sqrt{\frac{154 - 5 \cdot (-4)^2}{5 - 1}} = 4.3.$$

Hypotheses:

$$H_o: \bar{d} \geq 0; H_a: \bar{d} < 0.$$

Decision Rule:

$$\alpha = 0.05$$

Degrees of freedom
$$n-1=5-1=4$$

Critical t-score from t-table $t^* = 2.132$.

Reject
$$H_0$$
 if $t < -2.132$.

Test Statistic:

$$t = \frac{\bar{d}}{\frac{s}{\sqrt{n}}} = \frac{-4}{\frac{4.3}{\sqrt{5}}} = -2.08.$$

Decision (in terms of the hypotheses):

Since $t=-2.08>-{\rm t}^*=\ -2.132$ we fail to reject H_0 .

Conclusion (in terms of the problem):

There is no sufficient evidence at 0.05 significance level that people are likely to drive more slowly after such a workshop.