Answer to Question \#49513 - Math - Differential Calculus | Equations

So, we have a next problem:
find the solution of an ordinary differential equation

$$
\begin{equation*}
y^{\prime \prime}-3 y^{\prime}+2 y=3 e^{-x}-10 \cos 3 x, \tag{1}
\end{equation*}
$$

that satisfies initial conditions (a Cauchy problem):

$$
\begin{equation*}
y(0)=1, y^{\prime}(0)=2 \tag{2}
\end{equation*}
$$

Solution

The first step: Let's find the particular solution y_{h} of homogeneous equation :
$y^{\prime \prime}-3 y^{\prime}+2 y=0$
Let's write the characteristic equation:
$\lambda^{2}-3 \lambda+2=0$.
Solving this equation we obtain two values of λ, namely $\lambda_{1}=1$ and $\lambda_{2}=2$.
So, $y_{h}=C_{1} e^{x}+C_{2} e^{2 x}$, where C_{1} and C_{2} are unknown coefficients, which will be determined below.
The second step: Taking into account the right-hand side of equation (1), let's find the particular solution y_{p} of the equation (1) :
$y_{p}=A \cos (3 x)+B \sin (3 x)+C e^{-x}$,
where A, B and C are unknown coefficients. Let's find these coefficients.
$y_{p}^{\prime}=-3 A \sin (3 x)+3 B \cos (3 x)-C e^{-x}$
$y_{p}^{\prime \prime}=-9 A \cos (3 x)-9 B \sin (3 x)+C e^{-x}$.
Substituting $y_{p}, y_{p}^{\prime}, y_{p}^{\prime \prime}$ for y and its derivatives in the initial equation (1), we will obtain the next three equations to determine A, B and C :
$-9 A \cos (3 x)-9 B \sin (3 x)+C e^{-x}-3\left(-3 A \sin (3 x)+3 B \cos (3 x)-C e^{-x}\right)+2\left(A \cos (3 x)+B \sin (3 x)+C e^{-x}\right)=$ $=3 e^{-x}-10 \cos 3 x$
Now let's collect the coefficients for $\cos (3 x)$:
$(-9 A-9 B+2 A)=-10$.
Similarly, collect the coefficients for $\sin (3 x)$:
$-9 B+9 A+2 B=0$
In the same way, for e^{-x} :
$C+3 C+2 C=3 \Rightarrow C=\frac{1}{2}$.
Solving the system of equations:
$\left\{\begin{array}{c}-7 A-9 B=-10 \\ -7 B+9 A=0\end{array}\right.$,
we will find $A=\frac{7}{13}, B=\frac{9}{13}$.
Thus, $y_{p}=\frac{7}{13} \cos (3 x)+\frac{9}{13} \sin (3 x)+\frac{1}{2} e^{-x}$.
The third step: Let's write the general solution of (1) as $y_{h}+y_{p}$:
$y=y_{h}+y_{p}=C_{1} e^{x}+C_{2} e^{2 x}+\frac{7}{13} \cos (3 x)+\frac{9}{13} \sin (3 x)+\frac{1}{2} e^{-x}$.
The fourth step: Recall conditions (2) and solve the Cauchy problem, determine the coefficients C_{1} and C_{2}. From (3) we obtain
$y^{\prime}=C_{1} e^{x}+2 C_{2} e^{2 x}-\frac{21}{13} \sin (3 x)+\frac{27}{13} \cos (3 x)-\frac{1}{2} e^{-x}$
Plug (3) and (4) into (2):
$\left\{\begin{array}{l}y(0)=1 \\ y^{\prime}(0)=2\end{array} \Rightarrow\left\{\begin{array}{c}C_{1} e^{0}+C_{2} e^{0}+\frac{7}{13}+\frac{1}{2} e^{0}=1 \\ C_{1} e^{0}+2 C_{2} e^{0}+\frac{27}{13}-\frac{1}{2} e^{0}=2\end{array} \Rightarrow\left\{\begin{array}{c}C_{1}+C_{2}+\frac{7}{13}+\frac{1}{2}=1 \\ C_{1}+2 C_{2}+\frac{27}{13}-\frac{1}{2}=2\end{array} \Rightarrow\left\{\begin{array}{l}C_{1}=-\frac{1}{2} \\ C_{2}=\frac{6}{13}\end{array}\right.\right.\right.\right.$
So, $y=-\frac{1}{2} e^{x}+\frac{6}{13} e^{2 x}+\frac{7}{13} \cos (3 x)+\frac{9}{13} \sin (3 x)+\frac{1}{2} e^{-x}$.
Answer: $y=-\frac{1}{2} e^{x}+\frac{6}{13} e^{2 x}+\frac{7}{13} \cos (3 x)+\frac{9}{13} \sin (3 x)+\frac{1}{2} e^{-x}$.

