## Answer on Question \#49512 - Math - Differential Calculus | Equations

Solve the equation $G\left(d^{\wedge} 2\right) y / d x^{\wedge} 2-W(1-x)=0$ where $G$ and $W$ are constants, subject to the conditions that

$$
\begin{equation*}
y(0)=0, y^{\prime}(0)=1 \tag{1}
\end{equation*}
$$

## Solution

We have equation:

$$
\begin{gathered}
G \cdot \frac{d^{2} y}{d x^{2}}-W(1-x)=0, y(0)=0, y^{\prime}(0)=1 \\
G \cdot \frac{d^{2} y}{d x^{2}}=W(1-x)
\end{gathered}
$$

Divide both sides by G:
$\frac{d^{2} y}{d x^{2}}=\frac{W}{G}(1-x)$
Integrate (2) with respect to $x$ :
$\frac{d y}{d x}=\frac{W}{G}\left(x-\frac{x^{2}}{2}\right)+c_{1}$

Use the second initial condition (1) and previous equality (3):

$$
y^{\prime}(0)=1=\frac{W}{G}(0-0)+c_{1}=c_{1}
$$

So

$$
\begin{equation*}
c_{1}=1 \tag{4}
\end{equation*}
$$

Take into account (4) and integrate both sides of (3) with respect to $x$ :
$y(x)=\frac{W}{G}\left(\frac{x^{2}}{2}-\frac{x^{3}}{6}\right)+x+c_{2}$
Use the first initial condition (1) and previous equality (5):

$$
y(0)=0=\frac{W}{G}(0-0)+0+c_{2}=c_{2}
$$

So
$c_{2}=0$.
Answer: $y(x)=\frac{W}{G}\left(\frac{x^{2}}{2}-\frac{x^{3}}{6}\right)+x$.

