Answer on Question \#49494 - Math- Differential Calculus | Equations

 Question:Solve the second order differential equation
$y^{\prime \prime}-3 y^{\prime}+2 y=3 e^{\wedge}(-x)-10 \cos 3 x y(0)=1 y^{\prime}(0)=2$

Solution:

Solve $-3 \frac{d y(x)}{d x}+\frac{d^{2} y(x)}{d x^{2}}+2 y(x)=3 e^{-x}-10 \cos (3 x)$, such that $y(0)=2$ and $y^{\prime}(0)=2$:

The general solution will be the sum of the complementary solution and particular solution.
Find the complementary solution by solving $\frac{d^{2} y(x)}{d x^{2}}-3 \frac{d y(x)}{d x}+2 y(x)=0$:

Assume a solution will be proportional to $\boldsymbol{e}^{\boldsymbol{\lambda} \boldsymbol{x}}$ for some constant λ.
Substitute $y(x)=e^{\lambda x}$ into the differential equation:
$\frac{d^{2}}{d x^{2}}\left(e^{\lambda x}\right)-3 \frac{d}{d x}\left(e^{\lambda x}\right)+2 e^{\lambda x}=0$

Substitute $\frac{d^{2}}{d x^{2}}\left(\boldsymbol{e}^{\lambda x}\right)=\lambda^{2} \boldsymbol{e}^{\lambda x}$ and $\frac{d}{d x}\left(\boldsymbol{e}^{\lambda x}\right)=\lambda \boldsymbol{e}^{\lambda x}$:
$\lambda^{2} e^{\lambda x}-3 \lambda e^{\lambda x}+2 e^{\lambda x}=0$

Factor out $\boldsymbol{e}^{\boldsymbol{\lambda} \boldsymbol{x}}$:
$\left(\lambda^{2}-3 \lambda+2\right) e^{\lambda x}=0$

Since $\boldsymbol{e}^{\boldsymbol{\lambda} \boldsymbol{x}} \neq 0$ for any finite λ, the zeros must come from the polynomial:
$\lambda^{2}-3 \lambda+2=0$

Factor:

$(\lambda-2)(\lambda-1)=0$

Solve for λ :
$\lambda=1$ or $\lambda=2$

The root $\lambda=1$ gives $y_{1}(x)=c_{1} \boldsymbol{e}^{\boldsymbol{x}}$ as a solution, where c_{1} is an arbitrary constant.
The root $\lambda=2$ gives $y_{2}(x)=c_{2} \boldsymbol{e}^{2 \boldsymbol{x}}$ as a solution, where \boldsymbol{c}_{2} is an arbitrary constant. The general solution is the sum of the above solutions:
$y(x)=y_{1}(x)+y_{2}(x)=c_{1} e^{x}+c_{2} e^{2 x}$

Determine the particular solution to $\frac{d^{2} y(x)}{d x^{2}}+2 y(x)-3 \frac{d y(x)}{d x}=3 e^{-x}-10 \cos (3 x)$ by the method of undetermined coefficients:

The particular solution will be the sum of the particular solutions to $\frac{d^{2} y(x)}{d x^{2}}+2 y(x)-3 \frac{d y(x)}{d x}=3 e^{-x}$ and $\frac{d^{2} y(x)}{d x^{2}}+2 y(x)-3 \frac{d y(x)}{d x}=-10 \cos (3 x)$.
The particular solution to $\frac{d^{2} y(x)}{d x^{2}}+2 y(x)-3 \frac{d y(x)}{d x}=3 e^{-x}$ is of the form:
$y_{p_{1}}(x)=\frac{a_{1}}{\boldsymbol{e}^{x}}$

The particular solution to $\frac{d^{2} y(x)}{d x^{2}}+2 y(x)-3 \frac{d y(x)}{d x}=-10 \cos (3 x)$ is of the form:
$y_{p_{2}}(x)=a_{2} \cos (3 x)+a_{3} \sin (3 x)$

Sum $y_{p_{1}}(x)$ and $y_{p_{2}}(x)$ to obtain $y_{p}(x)$:
$y_{p}(x)=y_{p_{1}}(x)+y_{p_{2}}(x)=\frac{a_{1}}{e^{x}}+a_{2} \cos (3 x)+a_{3} \sin (3 x)$

Solve for the unknown constants a_{1}, a_{2}, and a_{3} :
Compute $\frac{\boldsymbol{d} y_{p}(x)}{\boldsymbol{d x}}$:

$$
\begin{aligned}
\frac{d y_{p}(x)}{d x} & =\frac{d}{d x}\left(\frac{a_{1}}{e^{x}}+a_{2} \cos (3 x)+a_{3} \sin (3 x)\right) \\
& =-\frac{a_{1}}{e^{x}}-3 a_{2} \sin (3 x)+3 a_{3} \cos (3 x)
\end{aligned}
$$

Compute $\frac{d^{2} y_{p}(x)}{d x^{2}}$:

$$
\begin{aligned}
\frac{d^{2} y_{p}(x)}{d x^{2}} & =\frac{d^{2}}{d x^{2}}\left(\frac{a_{1}}{x^{x}}+a_{2} \cos (3 x)+a_{3} \sin (3 x)\right) \\
& =\frac{a_{1}}{e^{x}}-9 a_{2} \cos (3 x)-9 a_{3} \sin (3 x)
\end{aligned}
$$

Substitute the particular solution $y_{p}(x)$ into the differential equation:

$$
\begin{aligned}
& \frac{d^{2} y_{p}(x)}{d x^{2}}-3 \frac{d y_{p}(x)}{d x}+2 y_{p}(x)=\frac{3}{e^{x}}-10 \cos (3 x) \\
& \left(\frac{a_{1}}{e^{x}}-9 a_{2} \cos (3 x)-9 a_{3} \sin (3 x)\right)-3\left(-\frac{a_{1}}{e^{x}}-3 a_{2} \sin (3 x)+3 a_{3} \cos (3 x)\right)+ \\
& \quad 2\left(\frac{a_{1}}{e^{x}}+a_{2} \cos (3 x)+a_{3} \sin (3 x)\right)=\frac{3}{e^{x}}-10 \cos (3 x)
\end{aligned}
$$

Simplify:

$$
\frac{6 a_{1}}{\boldsymbol{e}^{x}}+\left(-7 a_{2}-9 a_{3}\right) \cos (3 x)+\left(9 a_{2}-7 a_{3}\right) \sin (3 x)=\frac{3}{e^{x}}-10 \cos (3 x)
$$

Equate the coefficients of $\boldsymbol{e}^{\boldsymbol{- x}}$ on both sides of the equation:

$$
6 a_{1}=3
$$

Equate the coefficients of $\cos (3 x)$ on both sides of the equation:
$-7 a_{2}-9 a_{3}=-10$

Equate the coefficients of $\sin (3 x)$ on both sides of the equation:
$9 a_{2}-7 a_{3}=0$

Solve the system:
$a_{1}=\frac{1}{2}$
$a_{2}=\frac{7}{13}$
$a_{3}=\frac{9}{13}$

Substitute a_{1}, a_{2}, and a_{3} into $y_{p}(x)=a_{1} e^{-x}+a_{3} \sin (3 x)+a_{2} \cos (3 x)$:
$y_{p}(x)=\frac{1}{2 e^{x}}+\frac{7}{13} \cos (3 x)+\frac{9}{13} \sin (3 x)$

The general solution is:
$y(x)=y_{\mathrm{c}}(x)+y_{p}(x)=\frac{1}{2 e^{x}}+\frac{7}{13} \cos (3 x)+\frac{9}{13} \sin (3 x)+c_{1} e^{x}+c_{2} e^{2 x}$

Solve for the unknown constants using the initial conditions:
Compute $\frac{d y(x)}{d x}$:

$$
\begin{aligned}
\frac{d y(x)}{d x} & =\frac{d}{d x}\left(\frac{1}{2 e^{x}}+\frac{7}{13} \cos (3 x)+\frac{9}{13} \sin (3 x)+c_{1} e^{x}+c_{2} e^{2 x}\right) \\
& =-\frac{1}{2 e^{x}}+\frac{27}{13} \cos (3 x)-\frac{21}{13} \sin (3 x)+c_{1} e^{x}+2 c_{2} e^{2 x}
\end{aligned}
$$

Substitute $y(0)=2$ into $y(x)=c_{1} e^{x}+c_{2} e^{2 x}+\frac{e^{-x}}{2}+\frac{9}{13} \sin (3 x)+\frac{7}{13} \cos (3 x)$:
$c_{1}+c_{2}+\frac{27}{26}=2$

Substitute $y^{\prime}(0)=2$ into $\frac{d y(x)}{d x}=c_{1} e^{x}+2 c_{2} e^{2 x}-\frac{e^{-x}}{2}-\frac{21}{13} \sin (3 x)+\frac{27}{13} \cos (3 x)$:
$c_{1}+2 c_{2}+\frac{41}{26}=2$

Solve the system:
$c_{1}=\frac{3}{2}$
$c_{2}=-\frac{7}{13}$

Substitute $y(0)=2$ inta $y(x)=c_{1} \boldsymbol{e}^{x}+c_{2} \boldsymbol{e}^{2 x}+\frac{e^{-\alpha}}{2}+\frac{9}{13} \sin (3 x)+\frac{7}{13} \cos (3 x)$:
$c_{1}+c_{2}+\frac{27}{26}=2$

Substitute $y^{\prime}(0)=2$ into $\frac{d y(x)}{d x}=c_{1} e^{x}+2 c_{2} \varepsilon^{2 x}-\frac{e^{-x}}{2}-\frac{21}{13} \sin (3 x)+\frac{27}{13} \cos (3 x)$:
$c_{1}+2 c_{2}+\frac{41}{26}=2$

Solve the system:
$c_{1}=\frac{3}{2}$
$c_{2}=-\frac{7}{13}$

Substitute $c_{1}=\frac{3}{2}$ and $c_{2}=-\frac{7}{13}$ into $y(x)=$
$c_{1} e^{x}+c_{2} e^{2 x}+\frac{e^{-x}}{2}+\frac{9}{13} \sin (3 x)+\frac{7}{13} \cos (3 x):$
Answer:
$y(x)=-\frac{7}{13} e^{2 x}+\frac{3}{2} e^{x}+\frac{e^{-x}}{2}+\frac{9}{13} \sin (3 x)+\frac{7}{13} \cos (3 x)$

