Answer on Question \#49483 - Math - Complex Analysis

Find if these sequence convergent or divergent (details)

1) $\mathrm{Zn}=\left[\mathrm{i} .\left(\mathrm{z}^{\wedge} \mathrm{n}\right)-\mathrm{n} .\left(3^{\wedge}(\mathrm{n}+1)\right)\right] /\left[\right.$ i.n.$\left.\left(2^{\wedge}(\mathrm{n}-1)\right)\right]$
2) $\left[\right.$ conjugate $\left.\left(4 n^{\wedge} 2-i n+1\right)\right] /\left[(i n+3)^{\wedge} 2\right]$
3) $\left[8^{\wedge}(\mathrm{n}+1)-5^{\wedge}(\mathrm{n})\right] /\left[5 \cdot\left(8^{\wedge} \mathrm{n}\right)+3^{\wedge}(\mathrm{n}+1)\right]$

Solution

We say that a complex series converges if and only if both the real and imaginary parts converge.

1) $z_{n}=\frac{i z^{n}-n 3^{n+1}}{i n 2^{n-1}}=\frac{2}{n}\left(\frac{z}{2}\right)^{n}-\frac{6}{i}\left(\frac{3}{2}\right)^{n}=\frac{2}{n}\left(\frac{z}{2}\right)^{n}+6 i\left(\frac{3}{2}\right)^{n}=\frac{2}{n}\left(\frac{r \cos \varphi+i r \sin \varphi}{2}\right)^{n}+6 i\left(\frac{3}{2}\right)^{n}=$ $=\frac{2}{n}\left(\frac{r^{n} \cos (n \varphi)}{2^{n}}+\frac{r^{n} \sin (n \varphi)}{2^{n}}\right)+6 i\left(\frac{3}{2}\right)^{n}$. Since $\frac{3}{2}>1,\left(\frac{3}{2}\right)^{n} \leftrightarrow 0$, as $n \rightarrow \infty$, because $\left(\frac{3}{2}\right)^{n} \rightarrow \infty$ as $n \rightarrow \infty$ (the necessary condition of convergence does not hold true), therefore sequence $6\left(\frac{3}{2}\right)^{n}$ is divergent, hence the imaginary part diverges and consequently sequence z_{n} diverges. Note that if $|z| \leq 2$, then $\frac{2}{n}\left(\frac{z}{2}\right)^{n} \rightarrow 0$, as $n \rightarrow \infty$ (because $\frac{2}{n} \rightarrow 0$ as $n \rightarrow \infty$, and $\left(\frac{z}{2}\right)^{n}$ is bounded sequence in this case). If $|z|>2$, then $\frac{2}{n}\left|\frac{z}{2}\right|^{n}$ diverges as $n \rightarrow \infty$ by d'Alembert's ratio test (its real subsequence diverges, therefore $\frac{2}{n}\left(\frac{z}{2}\right)^{n}$ diverges).
2) $\frac{\overline{4 n^{2}-l n+1}}{(m n+3)^{2}}=\frac{4 n^{2}+i n+1}{-n^{2}+6 i n+9}=\frac{4+\frac{i}{n}+\frac{1}{n^{2}}}{-1+6 \frac{i}{n}+9 \frac{1}{n^{2}}} \rightarrow \frac{4}{-1}=-4$ as $n \rightarrow \infty$, because $\frac{i}{n} \rightarrow 0$ as $n \rightarrow \infty, \frac{1}{n^{2}} \rightarrow 0$ as $n \rightarrow \infty$. Thus, the sequence $\frac{\overline{4 n^{2}-l n+1}}{(m n+3)^{2}}$ is convergent.
3) $\frac{8^{n+1}-5^{n}}{5 \cdot 8^{n}+3^{n+1}}=\frac{8-\left(\frac{5}{8}\right)^{n}}{5+3 \cdot\left(\frac{3}{8}\right)^{n}} \rightarrow \frac{8}{5}$ as $n \rightarrow \infty$, because $\left(\frac{5}{8}\right)^{n} \rightarrow 0$ as $n \rightarrow \infty,\left(\frac{3}{8}\right)^{n} \rightarrow 0$ as $n \rightarrow \infty$

Thus, the sequence $\frac{8^{n+1}-5^{n}}{5 \cdot 8^{n}+3^{n+1}}$ is convergent.

