
 

 

Answer on Question #49483 – Math – Complex Analysis 

Find if these sequence convergent or divergent ( details ) 

1) Zn = [ i.(z^n) - n.(3^(n+1)) ] / [ i.n .(2^(n-1)) ] 

 

2) [ conjugate ( 4 n^2- i n +1 ) ] / [ (i n +3) ^2 ] 

 

3) [ 8 ^ (n+1) - 5^(n) ] / [ 5 . (8^n)+ 3 ^(n+1)] 

 

Solution 

We say that a complex series converges if and only if both the real and imaginary parts converge. 

 

1) 𝑧𝑛 =
𝑖𝑧𝑛−𝑛3𝑛+1
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 is divergent, hence the imaginary 

part diverges and consequently sequence 𝑧𝑛 diverges. Note that if |𝑧| ≤ 2, then 
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 diverges as 𝑛 → ∞ by d`Alembert`s ratio test (its real subsequence diverges, therefore  
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2) 
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→ 0 as 𝑛 → ∞ . Thus, the sequence  

4𝑛2−𝑖𝑛+1

(𝑖𝑛+3)2

̅̅ ̅̅ ̅̅ ̅̅ ̅̅
   is convergent.  

3) 
8𝑛+1−5𝑛
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 Thus,   the sequence 
8𝑛+1−5𝑛

5∙8𝑛+3𝑛+1
    is convergent. 
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