Answer on Question \#49481 - Math - Complex Analysis

Test series for convergence:

1) $\left[i^{\wedge} n /\left(2^{\wedge}(n+2)\right)\right]$
2) $(n!)^{\wedge} 2 / e^{\wedge} n$
3) $1 /[\operatorname{root}(i+n)]^{\wedge} n$
4) $e^{\wedge}(i \cosh n)$
5) $\left[\mathrm{n}+\mathrm{i} /\left(4^{\wedge} \mathrm{n}\right)\right]$

Solution

The complex series $\sum_{n=0}^{\infty} c_{n}$ is said to converge absolutely if the real series $\sum_{n=0}^{\infty}\left|c_{n}\right|$ converges.
The following statement can be proved : if a complex series converges absolutely, then it converges. We shall use this fact in the next problems.

1) $\left|\frac{i^{n}}{2^{n+2}}\right|=\frac{1}{2^{n+2}}=\frac{1}{4} \cdot \frac{1}{2^{n}}$ is a geometric sequence with common ratio $q=\frac{a_{n+1}}{a_{n}}=\frac{1}{2}<1$, so the series converges.
2) $\frac{c_{n+1}}{c_{n}}=\frac{((n+1)!)^{2}}{e^{n+1}}: \frac{(n!)^{2}}{e^{n}}=\frac{(n+1)^{2}}{e}>1$ for all $n \geq 1, \lim _{n \rightarrow \infty} \frac{c_{n+1}}{c_{n}}=\lim _{n \rightarrow \infty} \frac{(n+1)^{2}}{e}>1$ (it is plus infinity), hence by d^{\prime} Alambert's ratio test, the series diverges..
 the Cauchy ratio test, the series converges.
3) $\left|\boldsymbol{e}^{i \cosh (n)}\right|=1 \rightarrow 0$ (it does not tend to zero) as $n \rightarrow \infty$ (the necessary condition of convergence does not hold true in this case), so the series diverges.
4) $\left|\frac{n+i}{4^{n}}\right|<\frac{2 n}{4^{n}}$. Note that $\lim _{n \rightarrow \infty} \sqrt[n]{\frac{2 n}{4^{n}}}=\frac{1}{4}<1$ and by the Cauchy ratio test, the series converges.
