Answer on Question \#49456 - Math- Multivariable Calculus

Question:

Sketch the region of integration for the integral

$$
\begin{equation*}
\int_{0}^{2} \int_{x^{2}}^{2 x}(4 x+2) d x d y \tag{1}
\end{equation*}
$$

and write an equivalent integral with the order of integration reversed. Hence, evaluate the integral.

Solution:

1) Suppose that the the region of integration D is defined by $x_{1} \leq x \leq x_{2}$ and $y_{1}(x) \leq y \leq y_{2}(x)$ (the vertically simple region). The double integral is given by

$$
\begin{equation*}
\iint_{(D)} f(x, y) d x d y=\int_{x_{1}}^{x_{2}}\left(\int_{y_{1}(x)}^{y_{3}(x)} f(x, y) d y\right) d x \tag{2}
\end{equation*}
$$

and is computed as iterated integral.
2) If the region D is defined by $y_{1} \leq y \leq y_{2}$ and $x_{1}(y) \leq x \leq x_{2}(y)$ (the horizontally simple region), then the double integral is given by

$$
\begin{equation*}
\iint_{(D)} f(x, y) d x d y=\int_{y_{1}}^{y_{2}}\left(\int_{x_{1}(y)}^{x(y)} f(x, y) d x\right) d y \tag{3}
\end{equation*}
$$

and also is evaluated as iterated integral.
In our case the region D is bounded by the curves $y(x)=x^{2}$ and $y(x)=2 x$ (see fig.1)

Fig. 1
In the original integral, the integration order is $d y d x$ (this order corresponds to integrating first with respect to y). So, to compute (1) we can use the form (2) assuming that $0 \leq x \leq 2$ and $x^{2} \leq y \leq 2 x$:

$$
\begin{aligned}
& \int_{0}^{2}\left(\int_{x^{2}}^{2 x}(4 x+2) d y\right) d x=\int_{0}^{2}\left(\left.(4 x y+2 y)\right|_{x^{2}} ^{2 x}\right) d x=\int_{0}^{2}\left(\left(4 x \cdot 2 x+2 \cdot 2 x-\left(4 x \cdot x^{2}+2 \cdot x^{2}\right)\right)\right) d x \\
&=\int_{0}^{2}\left(8 x^{2}+4 x-\left(4 x^{3}+2 x^{2}\right)\right) d x=\int_{0}^{2}\left(6 x^{2}+4 x-4 x^{3}\right) d x=\left.\left(6 \frac{x^{3}}{3}+4 \frac{x^{2}}{2}-4 \frac{x^{4}}{4}\right)\right|_{0} ^{2} \\
&=\left(2^{4}+2^{3}-2^{4}\right)=8
\end{aligned}
$$

Now let us change the order of integration in (1) to be $d x d y$. For this we transform the limits of integration into the domain D. The order $d x d y$ means that y is the variable of the outer integral and its limits must be constant. So for variable y (see fig.1) we have $0 \leq y \leq 4$. As x will be the variable for the inner integration, we need to integrate with respect to x first. We can rewrite the equations $y(x)=x^{2}$ and $y(x)=2 x$ as $x(y)=\sqrt{y}$ and $x(y)=\frac{y}{2}$ respectively. Hence, the range of x is $\frac{y}{2} \leq x \leq \sqrt{y}$. Therefore, the integral (1) with the reversed order of integration takes the form (3), where region D is described by pair of inequalities $0 \leq y \leq 4$ and $\sqrt{y} \leq x \leq \frac{y}{2}$. Let us evaluate it.

$$
\begin{aligned}
\int_{0}^{4}\left(\int_{\frac{y}{2}}^{\sqrt{y}}(4 x+\right. & 2) d x) d y=\int_{0}^{4}\left(\left.\left(4 \frac{x^{2}}{2}+2 x\right) \right\rvert\, \frac{y}{\frac{y}{2}}\right) d y=\int_{0}^{4}\left(2(\sqrt{y})^{2}+2 \cdot \sqrt{y}-2\left(\frac{y}{2}\right)^{2}-2 \cdot \frac{y}{2}-\right) d y \\
& =\int_{0}^{4}\left(y+2 \cdot \sqrt{y}-\frac{y^{2}}{2}\right) d y=\left.\left(\frac{y^{2}}{2}+2 \cdot \frac{2}{3} \sqrt{y^{3}}-\frac{y^{3}}{6}\right)\right|_{0} ^{4}=\left(\frac{4^{2}}{2}+2 \cdot \frac{2}{3} \sqrt{4^{3}}-\frac{4^{3}}{6}\right) \\
& =\left(8+\frac{2^{6}}{6}-\frac{2^{6}}{6}\right)=8
\end{aligned}
$$

As it must, these iterated integrals give the same answer.
Answer: $\int_{0}^{2}\left(\int_{x^{2}}^{2 x}(4 x+2) d y\right) d x=\int_{0}^{4}\left(\int_{\frac{y}{2}}^{\sqrt{y}}(4 x+2) d x\right) d y=8$.

