Use the method of Lagrange multipliers to find the maximum and minimum values of the function $f(x, y)=3 x+4 y$ on the circle $x^{\wedge} 2+y^{\wedge} 2=1$

Solution.

$f(x, y)=3 x+4 y, \quad g(x, y)=x^{2}+y^{2}-1$.
We must solve $\nabla f=\lambda \nabla g$. This equation is actually the two equations:
$3=2 \lambda x$ and $4=2 \lambda y$ along with the constraint equation $x^{2}+y^{2}=1$
We have: $x=\frac{3}{2 \lambda}, y=\frac{2}{\lambda^{\prime}}$
substitute them into

$$
x^{2}+y^{2}=1, \text { multiply by } \lambda^{2} \text { and obtain } \frac{9}{4}+4=\lambda^{2}
$$

Thus, $\lambda= \pm \frac{5}{2}, x= \pm \frac{3}{5}, y= \pm \frac{4}{5}$.
$f\left(\frac{3}{5}, \frac{4}{5}\right)=5$ and $(x, y)=\left(\frac{3}{5}, \frac{4}{5}\right)$ is a relative maximum.
$f\left(-\frac{3}{5},-\frac{4}{5}\right)=-5$ and $\left(-\frac{3}{5},-\frac{4}{5}\right)$ is a relative minimum.

