Answer on Question #49451 – Math – Multivariable Calculus

Use the method of Lagrange multipliers to find the maximum and minimum values of the function f(x,y) = 3x + 4y on the circle $x^2 + y^2 = 1$

Solution.

$$f(x, y) = 3x + 4y, \ g(x, y) = x^2 + y^2 - 1.$$

We must solve $\nabla f = \lambda \nabla g$. This equation is actually the two equations:

 $3 = 2\lambda x$ and $4 = 2\lambda y$ along with the constraint equation $x^2 + y^2 = 1$ We have: $x = \frac{3}{2\lambda}$, $y = \frac{2}{\lambda}$

substitute them into

$$x^2 + y^2 = 1$$
, multiply by λ^2 and obtain $\frac{9}{4} + 4 = \lambda^2$.

Thus, $\lambda = \pm \frac{5}{2}$, $x = \pm \frac{3}{5}$, $y = \pm \frac{4}{5}$. $f\left(\frac{3}{5}, \frac{4}{5}\right) = 5$ and $(x, y) = \left(\frac{3}{5}, \frac{4}{5}\right)$ is a relative maximum. $f\left(-\frac{3}{5}, -\frac{4}{5}\right) = -5$ and $\left(-\frac{3}{5}, -\frac{4}{5}\right)$ is a relative minimum.

www.AssignmentExpert.com