Answer on Question #49120 - Math - Calculus

Find the Maclaurin expansion for the function $f(x)=\sin 2x$.

Solution.

The Maclaurin expansion for the function $g(t) = \sin t$ is $\sum_{k=1}^{\infty} \frac{(-1)^{k-1}}{(2k-1)!} \cdot t^{2k-1}$.

The series is convergent for $t \in R$.

Let substitute t = 2x. Then, the Maclaurin expansion for the function $f(x) = \sin 2x$ is

$$\sum_{k=1}^{\infty} \frac{(-1)^{k-1}}{(2k-1)!} \cdot (2x)^{2k-1} = \sum_{k=1}^{\infty} \frac{(-1)^{k-1} \cdot 2^{2k-1}}{(2k-1)!} \cdot x^{2k-1} .$$

This series is convergent for $x \in R$ too.

Answer:
$$\sum_{k=1}^{\infty} \frac{(-1)^{k-1} \cdot 2^{2k-1}}{(2k-1)!} \cdot x^{2k-1}$$
, convergent for $x \in R$.