Answer on Question \#48980 - Math -Multivariable Calculus

Find the local maximum and minimum values and saddle point or points of the function
$f(x, y)=2 x^{3}+x y^{2}+5 x^{2}+y^{2}$

Solution:

To find and classify critical points we find all of the first and second derivatives of order
$\frac{\partial f}{\partial x}=6 x^{2}+y^{2}+10 x$
$\frac{\partial f}{\partial y}=2 x y+2 y$
$\frac{\partial^{2} f}{\partial x^{2}}=12 x+10$
$\frac{\partial^{2} f}{\partial y^{2}}=2 x+2$
$\frac{\partial^{2} f}{\partial x \partial y}=2 y$

Critical points will be solutions to the system of equations:
$\frac{\partial f}{\partial x}=6 x^{2}+y^{2}+10 x=0$
$\frac{\partial f}{\partial y}=2 x y+2 y=0$

It follows $y=0$ or $x=-1$ from the second equation.

If $y=0$, then from the first equation we get
$2 x(3 x+5)=0$, hence $x=0$ or $x=-\frac{5}{3}$.

If $x=-1$, then from the first equation we get
$y^{2}-4=0$, hence $y=2$ or $y=-2$.
The critical points are $(0,0),\left(-\frac{5}{3}, 0\right)(-1,-2),(-1,2)$. At these points:
$(0,0)$
$\frac{\partial^{2} f}{\partial x^{2}}=10$
$\frac{\partial^{2} f}{\partial y^{2}}=2$
$\frac{\partial^{2} z}{\partial x \partial y}=0$
$D(0,0)=\frac{\partial^{2} z}{\partial x^{2}} \cdot \frac{\partial^{2} z}{\partial y^{2}}-\left(\frac{\partial^{2} z}{\partial x \partial y}\right)^{2}=20>0$
So, $D(0,0)$ is positive and $\frac{\partial^{2} f}{\partial x^{2}}$ is positive and so the point $(0,0,0)$ is a point of local minimum
$\left(-\frac{5}{3}, 0\right)$
$\frac{\partial^{2} f}{\partial x^{2}}=-10$
$\frac{\partial^{2} f}{\partial y^{2}}=-\frac{4}{3}$
$\frac{\partial^{2} f}{\partial x \partial y}=0$
$D\left(-\frac{5}{3}, 0\right)=\frac{\partial^{2} z}{\partial x^{2}} \cdot \frac{\partial^{2} z}{\partial y^{2}}-\left(\frac{\partial^{2} z}{\partial x \partial y}\right)^{2}=\frac{40}{3}>0$
So, $D\left(-\frac{5}{3}, 0\right)$ is positive and $\frac{\partial^{2} f}{\partial x^{2}}$ is negative and so the point $\left(-\frac{5}{3}, 0, \frac{125}{27}\right)$ is a point of local maximum
$(-1,-2)$
$\frac{\partial^{2} f}{\partial x^{2}}=12 x+10=-2$
$\frac{\partial^{2} f}{\partial y^{2}}=2 x+2=0$
$\frac{\partial^{2} z}{\partial x \partial y}=2 y=-4$
$D(-1,-2)=\frac{\partial^{2} z}{\partial x^{2}} \cdot \frac{\partial^{2} z}{\partial y^{2}}-\left(\frac{\partial^{2} z}{\partial x \partial y}\right)^{2}=-16<0$
So, $D(-1,-2)$ is negative and so the point $(-1,-2,3)$ is a saddle point
$\frac{\partial^{2} f}{\partial x^{2}}=12 x+10=-2$
$\frac{\partial^{2} f}{\partial y^{2}}=2 x+2=0$
$\frac{\partial^{2} z}{\partial x \partial y}=2 y=4$
$D(-1,2)=\frac{\partial^{2} z}{\partial x^{2}} \cdot \frac{\partial^{2} z}{\partial y^{2}}-\left(\frac{\partial^{2} z}{\partial x \partial y}\right)^{2}=-16<0$
So, $D(-1,2)$ is negative and so the point $(-1,2,3)$ is a saddle point

