Answer on Question \#48975 - Math - Calculus

A boat on the the ocean is 9 km from the nearest point on a straight shoreline; that point is 20 km from a restaurant on the shore. A woman plans to row the boat straight to a point on the shore and then walk along the shore to the restaurant. If she walks at $5 \mathrm{~km} / \mathrm{h}$ and rows at $4 \mathrm{~km} / \mathrm{h}$. How far will the point on shore be from the restaurant if she plans to minimize her total travel time

Solution.

Let A be a boat, B - the nearest point on the shoreline, C - landing point, D-restorant.

Let $A B=w=9, B C=x, B D=y=20$, angle $B A C=z$
Distance over water $=\frac{w}{\cos z}=\frac{9}{\cos z}$.
Distance over land $=20-w \tan z=20-9 \operatorname{tanz}$.
Time $t=\frac{9}{4 \cos z}+\frac{(20-9 \tan z)}{5}$
$\frac{d t}{d z}=\frac{9 \sin z}{4 \cos ^{2} z}-\frac{9}{5 \cos ^{2} z}=0 \rightarrow \sin z=\frac{4}{5} \rightarrow \cos z=\frac{3}{5} \rightarrow \tan z=\frac{4}{3}$
So, $x=9 \operatorname{tanz}=9 * \frac{4}{3}=12$
Distance from restaurant $=y-x=20-12=8 \mathrm{~km}$.

