Answer on Question \#48816 - Math - Complex Analysis

if $\operatorname{Ln} z=\operatorname{Ln}\left(z^{*}\right)$, prove z is real number

Solution

Let complex number be $z=a+b i$. Then $z^{*}=a-b i$.
$\operatorname{Ln} z=\ln |z|+i^{*}$ phi, where phi is angle in complex interpretation of z.
For $z^{*}, \operatorname{Ln} z^{*}=\ln \left|z^{*}\right|-i^{*}$ phi.
As we know, $|z|=\left|z^{*}\right|$ and according to statement of question, $\operatorname{Ln} z=\operatorname{Ln} z^{*}$.
So, we obtain next equation:
$\ln |z|+i^{*}$ phi $=\ln \left|z^{*}\right|-i^{*}$ phi.
It transforms to
I^{*} phi $=0$, which means that z is real number.

