Answer on Question \#48611 - Math - Calculus

Find $d y / d x$ when $\sin (x+y)=2 / 3$

Solution.

$\sin (x+y)=\frac{2}{3}$
Let's take a derivative of both parts d / dx :
$\frac{d}{d x}(\sin (x+y))=\frac{d}{d x}\left(\frac{2}{3}\right)=0$
$\frac{d}{d x}(\sin (x+y))=\cos (x+y) \cdot \frac{d}{d x}(x+y)=\cos (x+y) \cdot\left(1+\frac{d y}{d x}\right)$
So:
$\cos (x+y) \cdot\left(1+\frac{d y}{d x}\right)=0$
But:
$\sin (x+y)=\frac{2}{3} \rightarrow \cos (x+y)=\sqrt{1-\sin ^{2}(x+y)}=\sqrt{1-\left(\frac{2}{3}\right)^{2}}= \pm \frac{5}{9} \neq 0$
So:
$\left(1+\frac{d y}{d x}\right)=0$
Or:
$\frac{d y}{d x}=-1$

Answer:
$\frac{d y}{d x}=-1$

