Answer on Question #48124 – Math – Abstract Algebra:

Which of the following subsets are subgroups of D_{12} ? Justify your answer. i) { x, y, xy, y^2, y^3, e }

ii) $\{xy, xy^2, y^2, e\}$

iii) $\{x, y^3, xy^3, e\}$

Solution.

	$D_{12} = \langle x, y x^2 = y^{12} = (xy)^2 = e \rangle;$
i)	$y^2 \cdot y^3 = y^5;$
	$ord(y^{5}) = 12;$
	ord(x) = ord(xy) = 2;
	$y^5 \neq y, y^5 \neq y^2, y^5 \neq y^3, y^5 \neq e;$
	Hence, $y^5 \notin \{x, y, xy, y^2, y^3, e\}$. So, it is not a subgroup.
ii)	$y^2 \cdot y^2 = y^4;$
-	$ord(y^4) = 3;$
	ord(xy) = 2;
	$xy^2 = y^4 \Longrightarrow x = y^2 - \text{contradiction};$
	Hence, $y^4 \notin \{xy, xy^2, y^2, e\}$. So, it is not a subgroup.
iii)	$y^3 \cdot y^3 = y^6;$
-	$y^6 = x \Longrightarrow (xy)^2 = y^{14} = e - \text{contradiction};$
	$y^6 = y^3 \Longrightarrow y^3 = e - \text{contradiction};$
	$y^6 = xy^3 \Longrightarrow x = y^3 - \text{contradiction}.$
	Hence, $y^6 \notin \{x, y^3, xy^3, e\}$. So it is not a subgroup.