Answer on Question \#48124 - Math - Abstract Algebra:

Which of the following subsets are subgroups of D_{12} ? Justify your answer. i) $\left\{x, y, x y, y^{2}, y^{3}, e\right\}$
ii) $\left\{x y, x y^{2}, y^{2}, e\right\}$
iii) $\left\{x, y^{3}, x y^{3}, e\right\}$

Solution.

$$
D_{12}=<x, y \mid x^{2}=y^{12}=(x y)^{2}=e>;
$$

i) $\quad y^{2} \cdot y^{3}=y^{5}$;

$$
\begin{gathered}
\operatorname{ord}\left(y^{5}\right)=12 \\
\operatorname{ord}(x)=\operatorname{ord}(x y)=2 \\
y^{5} \neq y, y^{5} \neq y^{2}, y^{5} \neq y^{3}, y^{5} \neq e
\end{gathered}
$$

Hence, $y^{5} \notin\left\{x, y, x y, y^{2}, y^{3}, e\right\}$. So, it is not a subgroup.
ii) $\quad y^{2} \cdot y^{2}=y^{4}$;

$$
\begin{gathered}
\operatorname{ord}\left(y^{4}\right)=3 \\
\operatorname{ord}(x y)=2 \\
x y^{2}=y^{4} \Rightarrow x=y^{2}-\text { contradiction } ;
\end{gathered}
$$

Hence, $y^{4} \notin\left\{x y, x y^{2}, y^{2}, e\right\}$. So, it is not a subgroup.
iii) $y^{3} \cdot y^{3}=y^{6}$;

$$
\begin{gathered}
y^{6}=x \Rightarrow(x y)^{2}=y^{14}=e-\text { contradiction; } \\
y^{6}=y^{3} \Rightarrow y^{3}=e-\text { contradiction; } \\
y^{6}=x y^{3} \Rightarrow x=y^{3}-\text { contradiction }
\end{gathered}
$$

Hence, $y^{6} \notin\left\{x, y^{3}, x y^{3}, e\right\}$. So it is not a subgroup.

