Answer on Question #48119 - Math - Abstract Algebra

Problem.

Factorise 10 in two ways in Z[V-6]. Hence, show that Z[V-6] is not a UFD

Solution.

$$10 = (2 + \sqrt{-6})(2 - \sqrt{-6})$$

and

$$10 = 2 \cdot 5$$

Now we will prove that $2 - \sqrt{-6}$, $2 + \sqrt{-6}$, 2 and 5 are irreducible elements of $\mathbb{Z}[-\sqrt{6}]$.

- Suppose that there exist $a, b \neq 1,2$ such that ab = 2. Then 2 = N(2) = N(a)N(b). Hence N(a) = N(b) = 2. If $a = m + n\sqrt{-6}$. Therefore from N(a) = 2. $m^2 + 6n^2 = 2$. Then n = 0 and $m^2 = 2$. We obtain contradiction. Hence 2 is irreducible.
- Suppose that there exist $a,b \neq 1,5$ such that ab=5. Then 25=N(2)=N(a)N(b). Hence N(a)=N(b)=5. If $a=m+n\sqrt{-6}$. Therefore from N(a)=5. $m^2+6n^2=5$. Then n=0 and $m^2=5$. We obtain contradiction. Hence 5 is irreducible.
- Suppose that there exist $a,b \neq 1,2+\sqrt{-6}$ such that $ab=2+\sqrt{-6}$. Then $10=N(2+\sqrt{-6})=N(a)N(b)$. Hence N(a)=2 and N(b)=5 (w. l. o .g.). In two previous parts we prove that for all $c\in\mathbb{Z}[-6]$: $N(c)\neq 2$ and $N(c)\neq 5$. We obtain contradiction. Hence $2+\sqrt{-6}$ is irreducible.
- Suppose that there exist $a,b \neq 1,2-\sqrt{-6}$ such that $ab=2-\sqrt{-6}$. Then $10=N(2-\sqrt{-6})=N(a)N(b)$. Hence N(a)=2 and N(b)=5 (w. l. o .g.). In two previous parts we prove that for all $c\in\mathbb{Z}[-6]$: $N(c)\neq 2$ and $N(c)\neq 5$. We obtain contradiction. Hence $2-\sqrt{-6}$ is irreducible.

Therefore $2-\sqrt{-6}$, $2+\sqrt{-6}$, 2 and 5 are irreducible elements of $\mathbb{Z}\big[-\sqrt{6}\big]$. Suppose that we have two distinct factorizations of 10 and $\mathbb{Z}\big[-\sqrt{6}\big]$ is UFD. Then all factors are pairwise associated. Hence $N(2)=N(2+\sqrt{-6})$ or $N(2)=N(2-\sqrt{-6})$. Therefore 4=10. We obtain contradiction. Hence $\mathbb{Z}\big[-\sqrt{6}\big]$ is not UFD.