Answer on Question \#48119 - Math - Abstract Algebra

Problem.

Factorise 10 in two ways in $Z[\sqrt{ }-6]$. Hence, show that $Z[V-6]$ is not a UFD

Solution.

$$
10=(2+\sqrt{-6})(2-\sqrt{-6})
$$

and

$$
10=2 \cdot 5
$$

Now we will prove that $2-\sqrt{-6}, 2+\sqrt{-6}, 2$ and 5 are irreducible elements of $\mathbb{Z}[-\sqrt{6}]$.

- Suppose that there exist $a, b \neq 1,2$ such that $a b=2$. Then $2=N(2)=N(a) N(b)$. Hence $N(a)=N(b)=2$.
If $a=m+n \sqrt{-6}$. Therefore from $N(a)=2 . m^{2}+6 n^{2}=2$. Then $n=0$ and $m^{2}=2$. We obtain contradiction. Hence 2 is irreducible.
- Suppose that there exist $a, b \neq 1,5$ such that $a b=5$. Then $25=N(2)=N(a) N(b)$. Hence $N(a)=N(b)=5$.
If $a=m+n \sqrt{-6}$. Therefore from $N(a)=5 . m^{2}+6 n^{2}=5$. Then $n=0$ and $m^{2}=5$. We obtain contradiction. Hence 5 is irreducible.
- Suppose that there exist $a, b \neq 1,2+\sqrt{-6}$ such that $a b=2+\sqrt{-6}$. Then $10=$ $N(2+\sqrt{-6})=N(a) N(b)$. Hence $N(a)=2$ and $N(b)=5$ (w. l. o .g.). In two previous parts we prove that for all $c \in \mathbb{Z}[-6]: N(c) \neq 2$ and $N(c) \neq 5$. We obtain contradiction. Hence $2+\sqrt{-6}$ is irreducible.
- Suppose that there exist $a, b \neq 1,2-\sqrt{-6}$ such that $a b=2-\sqrt{-6}$. Then $10=$ $N(2-\sqrt{-6})=N(a) N(b)$. Hence $N(a)=2$ and $N(b)=5$ (w. I. o .g.). In two previous parts we prove that for all $c \in \mathbb{Z}[-6]: N(c) \neq 2$ and $N(c) \neq 5$. We obtain contradiction. Hence $2-\sqrt{-6}$ is irreducible.
Therefore $2-\sqrt{-6}, 2+\sqrt{-6}, 2$ and 5 are irreducible elements of $\mathbb{Z}[-\sqrt{6}]$.
Suppose that we have two distinct factorizations of 10 and $\mathbb{Z}[-\sqrt{6}]$ is UFD. Then all factors are pairwise associated. Hence $N(2)=N(2+\sqrt{-6})$ or $N(2)=N(2-\sqrt{-6})$. Therefore $4=10$. We obtain contradiction. Hence $\mathbb{Z}[-\sqrt{6}]$ is not UFD.

