Problem.

Factorise 10 in two ways in Z[V-6]. Hence, show that Z[V-6] is not a UFD

Solution.
$$10 = (2 + \sqrt{-6})(2 - \sqrt{-6})$$

and

 $10 = 2 \cdot 5$

Now we will prove that $2 - \sqrt{-6}$, $2 + \sqrt{-6}$, 2 and 5 are irreducible elements of $\mathbb{Z}[-\sqrt{6}]$.

- Suppose that there exist a, b ≠ 1,2 such that ab = 2. Then 2 = N(2) = N(a)N(b). Hence N(a) = N(b) = 2.
 If a = m + n√-6. Therefore from N(a) = 2. m² + 6n² = 2. Then n = 0 and m² = 2. We obtain contradiction. Hence 2 is irreducible.
- Suppose that there exist $a, b \neq 1,5$ such that ab = 5. Then 25 = N(2) = N(a)N(b). Hence N(a) = N(b) = 5. If $a = m + n\sqrt{-6}$. Therefore from N(a) = 5. $m^2 + 6n^2 = 5$. Then n = 0 and $m^2 = 5$. We obtain contradiction. Hence 5 is irreducible.
- Suppose that there exist $a, b \neq 1, 2 + \sqrt{-6}$ such that $ab = 2 + \sqrt{-6}$. Then $10 = N(2 + \sqrt{-6}) = N(a)N(b)$. Hence N(a) = 2 and N(b) = 5 (w. l. o.g.). In two previous parts we prove that for all $c \in \mathbb{Z}[-6]$: $N(c) \neq 2$ and $N(c) \neq 5$. We obtain contradiction. Hence $2 + \sqrt{-6}$ is irreducible.
- Suppose that there exist $a, b \neq 1, 2 \sqrt{-6}$ such that $ab = 2 \sqrt{-6}$. Then $10 = N(2 \sqrt{-6}) = N(a)N(b)$. Hence N(a) = 2 and N(b) = 5 (w. l. o .g.). In two previous parts we prove that for all $c \in \mathbb{Z}[-6]$: $N(c) \neq 2$ and $N(c) \neq 5$. We obtain contradiction. Hence $2 \sqrt{-6}$ is irreducible.

Therefore $2 - \sqrt{-6}$, $2 + \sqrt{-6}$, 2 and 5 are irreducible elements of $\mathbb{Z}\left[-\sqrt{6}\right]$.

Suppose that we have two distinct factorizations of 10 and $\mathbb{Z}[-\sqrt{6}]$ is UFD. Then all factors are pairwise associated. Hence $N(2) = N(2 + \sqrt{-6})$ or $N(2) = N(2 - \sqrt{-6})$. Therefore 4 = 10. We obtain contradiction. Hence $\mathbb{Z}[-\sqrt{6}]$ is not UFD.