Answer on Question \#47342 - Math - Abstract Algebra

(a) Show that $<x>$ is not a maximal ideal in $z[x]$.
(b) List all the subgroups of Z18, along with 3 their generators.
(c) Let $\mathrm{H}=<\left(\begin{array}{ll}1 & 2\end{array}\right)>$ and $\mathrm{k}=<\left(\begin{array}{ll}1 & 2\end{array}\right)>$ be subgroups of S_{3}. Show that $S_{3}=\mathrm{Hk}$. Is S_{3} an internal direct product of H and k ? Justify your answer.
(d) Check whether or not $\{(2,5),(1,3),(5,2),(3,1)$ is an equivalence relation on $\{1,2,3,5\}$.

Solution:

We know that $[\mathrm{x}]$ is just all polynomials with even coefficients. This is not maximal because $Z[x]$ contains many ideals more than Z. For example, it contains the ideal $\langle x\rangle$, which is all things that have positive degree (i.e non-constants).

In the case of $Z[x]$, the ideal equal to

$$
(x)=\left\{a_{1} x+a_{2} x^{2}+\ldots a^{n} x^{n} ; x_{k} \in Z, 1 \leq k \leq n\right\}
$$

Is a principal ideal of $Z[x]$ generated $x \cdot \frac{Z[x]}{(x)} \cong Z$, an integral domain. So, (x) is a prime ideal of $\mathrm{Z}[\mathrm{x}]$. Let $\mathrm{J}=(\mathrm{x}, 2)$ the ideal generated by x and 2 in $\mathrm{Z}[\mathrm{x}]$. J is a maximal ideal (of $\mathrm{Z}[\mathrm{x}]$), which contain polynomials of the form:

$$
a_{0}+a_{1} x+a_{2} x^{2}+\ldots a^{n} x^{n} ; a_{i} \in Z, 0 \leq i \leq n
$$

Where a_{0} is even. As $\frac{Z[x]}{J}$ is a field having two elements, J is a maximum ideal of $Z[x]$ containing the prime ideal (x). So, the prime ideal (x) is not a maximum ideal of $Z[x]$. Thus, $\mathrm{Z}[\mathrm{x}]$ is not a Dedekind domain. $\mathrm{Z}[\mathrm{x}]$ is not a PID also, as a principal ideal domain has to be a Dedekind domain. This conclusion is also obvious from the fact that J is not a principal ideal of $\mathrm{Z}[\mathrm{x}]$.
(b) List all the subgroups of Z_{18}, along with 3 their generators.

The divisors of 18 are $1,2,3,6,9$, and 12 . There is a subgroup of each of these orders, and they are generated by [0], [9], [6], [3], [2], and [1] respectively.

That is, the subgroups of $Z_{18}\langle[0]\rangle,\langle[9]\rangle,\langle[6]\rangle,\langle[3]\rangle,\langle[2]\rangle$ and $\langle[1]\rangle$.
(c) Let $\mathrm{H}=<\left(\begin{array}{ll}1 & 2\end{array}\right)>$ and $\mathrm{k}=<\left(\begin{array}{lll}1 & 2 & 3\end{array}\right)>$ be subgroups of S_{3}. Show that $S_{3}=H \mathrm{H}$. Is S_{3} an internal direct product of H and k ? Justify your answer.

We write e for the identity element of S_{3}, note that $\mathrm{H}=\{\mathrm{e},(1,2)\}$ and $\mathrm{K}=\{\mathrm{e},(1,2,3)$, $(1,3,2)\}$. So Hk clearly contains e, (1,2), (1,2,3), and (1,3,2). The computations
$(1,2)(1,2,3)=(2,3)$
$(1,2)(1,3,2)=(1,3)$
We need to show that HK also contains (2,3) and (1,3). Since $S_{3}=\{e,(1,2),(1,3),(2,3)$, $(1,2,3),(1,3,2)\}$ we have shown that Hk contains every element of S_{3}, and hence $S_{3}=\mathrm{Hk}$.

We note that H and k are both abelian groups (because e.g. they are both cyclic). A direct product of abelian groups (whether internal or external) is abelian. Since S_{3} is not abelian, this tells us that S_{3} is not an internal direct product of H and K . (We know that any group of order less than 6 is abelian, this argument shows more: S_{3} is not an internal direct product of any two of its proper subgroups.)
(d) Check whether or not $\{(2,5),(1,3),(5,2),(3,1)$ is an equivalence relation on $\{1,2,3,5\}$.

In mathematics, an equivalence relation is the relation that holds between two elements if and only if they are members of the same cell within a set that has been partitioned into cells such that every element of the set is a member of one and only one cell of the partition. The intersection of any two different cells is empty; the union of all the cells equals the original set. These cells are formally called equivalence classes.

A relation R on a set A is an equivalence relation if and only if R is

- reflexive,
- symmetric, and
- transitive.

Let R be a relation on set A. Any equivalence relation must be reflexive i.e. for all a in A we must have (a, a) in R .

In our example we must have all $(1,1),(2,2),(3,3),(5,5)$ present in R which we don't. In fact, none are in R.

Therefore Is not an equivalence relation, R is not reflexive, since $(1,1) \notin R$ for example.

