Answer on Question \#47278 - Math - Analytic Geometry

PN is any chord of the parabola $y^{2}=4 a x$; the point M divides $P N$ in the ratio $m: n$. find the locus of M.

Solution:

We consider point P on the parabola and N on the x -axis. Let $\left(x_{1}, y_{1}\right)$ be the point on the parabola, and M will be (x, y). Then we can write the following:

$$
y_{1}^{2}=4 a x_{1}
$$

Then we can note the following equity accordingly to the condition of the task:

$$
\begin{gathered}
x=x_{1} \\
y=\frac{y_{1} n}{(m+n)}
\end{gathered}
$$

Based on the first formula we can find the square of the y.

$$
y^{2}=\frac{y_{1}^{2} n^{2}}{(m+n)^{2}}
$$

Now we can eliminate the y_{1}^{2} from the first and last equations. We obtained the following result.

$$
y^{2}=\frac{4 a x_{1} n^{2}}{(m+n)^{2}}
$$

We apply the second equation to eliminate the x_{1}. We obtained the resulting equation.

$$
y^{2}=\frac{4 a x n^{2}}{(m+n)^{2}}
$$

We can rewrite the noted above equation.

$$
\begin{gathered}
y^{2}=4\left[\frac{a n^{2}}{(m+n)^{2}}\right] x \\
4 a x n^{2}=y^{2}(m+n)^{2}
\end{gathered}
$$

The locus is the parabola $y^{2}=4 b x$ where:

$$
b=\frac{y^{2}}{4 x}=\frac{4 a x n^{2}}{(m+n)^{2}} \div \frac{4 x}{1}=\frac{4 a x n^{2}}{(m+n)^{2}} \cdot \frac{1}{4 x}
$$

Simplify the equation. Finally we obtained the find value.

$$
b=\frac{a n^{2}}{(m+n)^{2}}
$$

