Answer on Question \#47277 - Math - Analytic Geometry

Show that the straight line $x(p+2 q)+y(p+3 q)=p+q$ passes through a fixed point for different values of p and q.

Solution:

A line is an infinite geometrical figure. If we extend a line segment at both ends, we get a line. A line is always represented by two arrows at its ends, to indicate its infinite nature.

Mathematically, a line can be represented by a linear equation, that is, an equation of degree one. The most general form of a straight line is

$$
a x+b y+c=0 ; a^{2}+b^{2} \neq 0
$$

All the points (x, y) that lie on the line satisfy the equation on that line, and conversely, if a point (x, y) satisfies the equation of a line, it lies on that line.

We can simplify our equation by opening the parenthesis:

$$
x p+2 x q+y p+3 y q-p-q=0
$$

Combine like terms:

$$
\begin{gathered}
(x p+y p-p)+(2 x q+3 y q-q)=0 \\
p(x+y-1)+q(2 x+3 y-1)=0
\end{gathered}
$$

Thus, the given line passes through the intersection of the lines $x+y-1=0$ and $2 x+$ $3 y-1=0$.

Now we have to solve the system of the obtained equations.

$$
\left\{\begin{array}{l}
x+y-1=0 \\
2 x+3 y-1=0
\end{array}\right.
$$

Solve system of equations by elimination by addition. We multiply the first equation by 2 and add two equations.

$$
\left\{\begin{array}{l}
-2 x-2 y+2=0 \\
2 x+3 y-1=0
\end{array} \quad-2 x-2 y+2+2 x+3 y-1=0\right. \text { ? }
$$

Simplify by combining like terms:

$$
-2 y+2+3 y-1=0
$$

$y=-1$

Now we find the value of x. We can substitute the value of y either in the first or second equation. In our case we choose the first equation.

$$
\begin{gathered}
x+(-1)-1=0 \\
x-2=0 \\
x=2
\end{gathered}
$$

The coordinate of the find point will be equal to $(2,-1)$.
We can also check obtained solution. Substitute the values of x and y into the original equations.

$$
\left\{\begin{array}{l}
2+(-1)-1=0 \\
2(2)+3(-1)-1=0
\end{array}\right.
$$

Simplify the system of equations.
$\left\{\begin{array}{l}2-2=0 \\ 4-3-1=0\end{array}\right.$
$\left\{\begin{array}{l}0=0 \\ 0=0\end{array}\right.$
Thus we got the true statement. The required coordinate of point are equal $(2,-1)$.
We can also consider different values of p and q. For example, we put $p=3$ and $q=1$. Substitute into original equation of the line.

$$
x(3+2)+y(3+3)=3+1
$$

Simplify by opening the parenthesis.

$$
5 x+6 y=4
$$

Now substitute the find coordinate of the x and y.

$$
\begin{gathered}
5(2)+6(-1)=4 \\
10-6=4 \\
4=4
\end{gathered}
$$

We also can consider other values of p and q. For example, $p=-2$ and $q=-1$. As in previous part we substitute into original equation. We obtained the following result.

$$
x(-2+2(-1))+y(-2+3(-1))=-2-1
$$

Simplify by opening the parenthesis.

$$
-4 x-5 y=-3
$$

Now substitute the find coordinate of the $x=2$ and $y=-1$.

$$
\begin{gathered}
-4(2)-5(-1)=-3 \\
-8+5=-3 \\
-3=-3
\end{gathered}
$$

We again got the true statement.
In this way our system has a unique solution therefore for any values of p and q line $x(p+2 q)+y(p+3 q)=p+q$ passes through a fixed point with coordinates $(2,-1)$.

