Answer on Question #47132 – Math - Calculus

Trace the following curves

1) y square equal To (x-1)(x+1)(x-3)

2) y square (x-a) equal to x square (x+a); a is greater than 0

Solution.

1)
$$y^2 = (x-1)(x+1)(x-3)$$

- x-intercepts: $y = 0 \rightarrow (x-1)(x+1)(x-3) = 0 \rightarrow x = -1$,
 $x = 1, x = 3$.

- y intercepts: $x = 0 \rightarrow y^2 = 3 \rightarrow y = -\sqrt{3}$, $y = \sqrt{3}$.
- the exponent of *y* is always even in the equation of the curve then the *x*-axis is an axis of symmetry for the curve.

-
$$y^2 \ge 0$$
, so $(x-1)(x+1)(x-3) \ge 0$ → $-1 \le x \le 1$ or $x \ge 3$.

- when $x \to \infty$, y behaves as $\pm x^{\frac{3}{2}}$.

- 2) $y^2(x-a) = x^2(x+a), \ a > 0$
 - x intercepts: $y = 0 \rightarrow x^2(x + a) = 0 \rightarrow x = -a, x = 0$.
 - y intercepts: $x = 0 \rightarrow y = 0$.
 - the exponent of *y* is always even in the equation of the curve then the *x*-axis is an axis of symmetry for the curve.
 - vertical asymptote x = a.

-
$$y^2 \ge 0$$
, so $\frac{x+a}{x-a} \ge 0 \rightarrow x > a \text{ or } x \le -a$.

- when $x \to \infty$, *y* behaves as $\pm x$.

