Answer on Question \#47129-Math - Calculus

Show that $\frac{x^{2}}{2} \log (1+x)<\frac{x^{2}}{2}(1+x)$ for any $x>0$.

$$
\begin{array}{r}
\frac{x^{2}}{2} \log (1+x)<\frac{x^{2}}{2}(1+x) \\
\frac{x^{2}}{2}(\log (1+x)-(1+x))<0 \tag{1}
\end{array}
$$

$\frac{x^{2}}{2}>0$ for any $x>0$, hence we can rewrite inequality:

$$
\begin{equation*}
f(x)=\log (1+x)-(1+x)<0 \tag{2}
\end{equation*}
$$

Particular case of $x=0: \log (1+0)-(1+0)=\log (1)-1=-1<0$.
(Note that inequality (1) turns into 0)
As soon as we know that (2) true for $x=0$, the only thing we need to show is that $f(x)$ decreases as x increases. Mathematically: $\frac{d f(x)}{d x}<0$ for any $x>0$.

$$
\begin{gathered}
\frac{d f(x)}{d x}=\frac{d(\log (1+x))}{d x}-\frac{d(1+x)}{d x}=\frac{1}{1+x}-1<0 \\
\frac{1}{1+x}<1
\end{gathered}
$$

For any $x>0: 1+x>0$, hence we can write:

$$
\begin{gathered}
1<1+x \\
0<x
\end{gathered}
$$

Thus, $\frac{d f(x)}{d x}<0$ and $\frac{x^{2}}{2} \log (1+x)<\frac{x^{2}}{2}(1+x)$ for any $x>0$.

