Answer on Question \#47124 - Mathematics - Calculus

Question:

Find the area of the region enclosed by the curves $y_{1}(x)=x^{2}$ and $y_{2}(x)=\frac{1}{2}\left(x^{2}+x\right)$.

Solution:

Let graph the given curves and find their interception points.

Fig. 1
$x^{2}=\frac{1}{2}\left(x^{2}+x\right) \Rightarrow x^{2}-\frac{1}{2} x^{2}-\frac{1}{2} x=0 \Rightarrow \frac{1}{2} x^{2}-\frac{1}{2} x=0 \Rightarrow x(x-1)=0 \Rightarrow x_{1}=0, \quad x_{2}=1$.
Therefore, the interception points are $x_{1}=0, x_{2}=1$.
By definition, the area of the region between curves $y=f(x)$ and $y=g(x)$ on the interval $[a, b]$ (assuming that $f(x) \geq g(x))$ is defined by the following formula

$$
S=\int_{a}^{b}(f(x)-g(x)) d x
$$

Since $y_{2}(x)=\frac{1}{2}\left(x^{2}+x\right)>y_{1}(x)=x^{2}$ (see fig.1), then we have

$$
\begin{aligned}
& S=\int_{0}^{1}\left(\frac{1}{2}\left(x^{2}+x\right)-x^{2}\right) d x=\int_{0}^{1}\left(\frac{1}{2} x-\frac{1}{2} x^{2}\right) d x=\left.\left(\frac{x^{2}}{4}-\frac{x^{3}}{6}\right)\right|_{0} ^{1}=\frac{1}{4}-\frac{1}{6}=\frac{2}{24}=\frac{1}{12} \\
& \cong 0.08 \text { square units }
\end{aligned}
$$

Answer: $S=\frac{1}{12} \cong 0.08$ square units.

