Answer on Question \#46834 - Math - Analytic Geometry

Problem.

Let R be the point which divides the line segment joining $P(2,1,0)$ and $Q(-1,3,4)$ in the ratio 1:2 such that $P R<P Q$. Find the $=n$ of the line passing through R and parallel to the line $x / 2=y / 1=z / 3$

Solution:

Let R has coordinates (a, b, c). Then $2 \overrightarrow{P R}=\overrightarrow{R Q} \cdot \overrightarrow{P R}=(a-2, b-1, c)$ and $\overrightarrow{R Q}=(-1-a, 3-b, 4-c)$. Hence $2(a-2, b-1, c)=(-1-a, 3-b, 4-c)$. Therefore $2 a-4=-1-a, 2 b-2=3-b, 2 c=4-c$. Hence $a=1, b=\frac{1}{3}, c=\frac{4}{3}, R\left(1, \frac{1}{3}, \frac{4}{3}\right)$. The line, that passes through $R\left(1, \frac{1}{3}, \frac{4}{3}\right)$ and is parallel to the line $x / 2=y / 1=z / 3$, has equation

$$
\frac{x-1}{2}=\frac{y-\frac{1}{3}}{1}=\frac{z-\frac{4}{3}}{3}
$$

or

$$
\frac{x-1}{2}=\frac{3 y-1}{3}=\frac{3 z-4}{9} .
$$

Answer: $\frac{x-1}{2}=\frac{3 y-1}{3}=\frac{3 z-4}{9}$.

