## Answer on Question \#46083 - Math - Multivariable Calculus

Question. Find the direction in which the function $f=x^{2}-y^{2}-2 x y$ decreases most rapidly at the point $(1,1)$.
Solution. Recall that the direction in which the function $f$ increases most rapidly at the point $(1,1)$ is given by the gradient,

$$
\nabla f=\left(f_{x}^{\prime}, f_{y}^{\prime}\right)
$$

of $f$ at that point.
Therefore the direction in which the function $f$ decreases most rapidly at the point $(1,1)$ is opposite to the gradient, i.e.

$$
-\nabla f=\left(-f_{x}^{\prime},-f_{y}^{\prime}\right) .
$$

We have that

$$
f_{x}^{\prime}=2 x-2 y, \quad f_{y}^{\prime}=-2 y-2 x
$$

and so

$$
\begin{aligned}
& f_{x}^{\prime}(1,1)=2 \cdot 1-2 \cdot 1=2-2=0 \\
& f_{y}^{\prime}(1,1)=-2 \cdot 1-2 \cdot 1=-2-2=-4
\end{aligned}
$$

Hence the direction in which the function $f$ decreases most rapidly at the point $(1,1)$ is

$$
-\nabla f=-(0,-4)=(0,4)
$$

Answer. (0, 4).

