Answer on Question #40386 - Math - Differential Calculus

Solve: $xy' - y = e^{y'}$. Also obtain its singular solution.

Solution:

Solve the Clairaut equation
$$x \frac{dy(x)}{dx} - y(x) = e^{\frac{dy(x)}{dx}}$$
:

Subtract $x \frac{dy(x)}{dx}$ from both sides and divide by -1:

$$y(x) = -e^{\frac{dy(x)}{dx}} + x \frac{dy(x)}{dx}$$

Differentiate both sides with respect to x:

$$\frac{dy(x)}{dx} = \frac{dy(x)}{dx} - e^{\frac{dy(x)}{dx}} \frac{d^2y(x)}{dx^2} + x \frac{d^2y(x)}{dx^2}$$

Factor:

$$\frac{dy(x)}{dx} = \frac{dy(x)}{dx} + \frac{d^2y(x)}{dx^2} \left(-e^{\frac{dy(x)}{dx}} + x \right)$$

Subtract $\frac{dy(x)}{dx}$ from both sides:

$$\frac{d^2 y(x)}{dx^2} \left(-e^{\frac{dy(x)}{dx}} + x \right) = 0$$

Solve
$$\frac{d^2y(x)}{dx^2} = 0$$
 and $x - e^{\frac{dy(x)}{dx}} = 0$ separately:

For
$$\frac{d^2y(x)}{dx^2} = 0$$
:

Integrate both sides with respect to x:

$$\frac{dy(x)}{dx} = \int 0 dx = c_1$$
, where c_1 is an arbitrary constant.

Substitute
$$\frac{dy(x)}{dx} = c_1$$
 into $y(x) = x \frac{dy(x)}{dx} - e^{\frac{dy(x)}{dx}}$: $y(x) = -e^{c_1} + c_1 x$

For
$$x - e^{\frac{dy(x)}{dx}} = 0$$
:
Solve for $\frac{dy(x)}{dx}$:
 $\frac{dy(x)}{dx} = \log(x)$

Substitute into
$$y(x) = x \frac{dy(x)}{dx} - e^{\frac{dy(x)}{dx}}$$
:
 $y(x) = -x + x \log(x)$

Collect solutions:

Answer:

$$y(x) = -e^{c_1} + c_1 x$$
 or $y(x) = -x + x \log(x)$