Answer on 39181, Math, Other From

$$
\delta f=2 x y z^{3} \vec{i}+x^{2} z^{3} \vec{j}+3 x^{2} y z^{2} \vec{k}
$$

we see that

$$
\frac{\partial f}{\partial x}=2 x y z^{3}, \quad \frac{\partial f}{\partial y}=x^{2} z^{3}, \quad \frac{\partial f}{\partial z}=3 x^{2} y z^{2}
$$

from where we can easily find (by integrating with respect to x first one equation)

$$
f=x^{2} y z^{3}+C
$$

where C in integration constant which can be found from condition

$$
f(1,-2,2)=4
$$

we have

$$
\begin{gathered}
1^{2} \cdot(-2) \cdot 2^{3}+C=4 \\
C=4+16=20
\end{gathered}
$$

Hence

$$
f=x^{2} y z^{3}+20
$$

