Answer on Question\#38388 - Math - Calculus

A vector has direction angles $\alpha=85^{\circ}$ and $\beta=65^{\circ}$
a) Find the value of γ ?
b) Find a vector that has those direction angles?
c) Explain why it is not possible for two of a vector's direction angles to be less than 45° ?

Solution

a) From the equation $\cos ^{2} \alpha+\cos ^{2} \beta+\cos ^{2} \gamma=1$ we can find γ :

$$
\cos \gamma= \pm \sqrt{1-\cos ^{2} \alpha-\cos ^{2} \beta}= \pm \sqrt{1-\cos ^{2} 85^{\circ}-\cos ^{2} 65^{\circ}}
$$

$$
\cos \gamma= \pm 0.902 \rightarrow \gamma=\cos ^{-1} 0.902=25.6^{\circ} \text { or } \gamma=\cos ^{-1}(-0.902)=154.4^{\circ}
$$

b) We can find a vector that has those direction angles from the equation

$$
\frac{\cos \alpha}{V_{x}}=\frac{\cos \beta}{V_{y}}=\frac{\cos \gamma}{V_{z}}=\frac{1}{|\vec{V}|} .
$$

A vector that has those direction angles and $|\vec{V}|=V$ - any positive constant \vec{V} is

$$
\begin{aligned}
\vec{V} & =\left(V \cos 85^{\circ}, V \cos 65^{\circ}, V \cos 25.6^{\circ}\right) \mathrm{o} r \\
\vec{V} & =\left(V \cos 85^{\circ}, V \cos 65^{\circ}, V \cos 154.4^{\circ}\right) .
\end{aligned}
$$

So

$$
\begin{aligned}
\vec{V} & =(V \cdot 0.087, V \cdot 0.423, V \cdot 0.902) \mathrm{or} \\
\vec{V} & =(V \cdot 0.087, V \cdot 0.423,-V \cdot 0.902) .
\end{aligned}
$$

c) If two of a vector's direction angles are less than 45° their cosines will be greater then $\cos 45^{\circ}=\frac{1}{\sqrt{2}}$.

From the equation $\cos ^{2} \alpha+\cos ^{2} \beta+\cos ^{2} \gamma=1$:

$$
\cos ^{2} \gamma=1-\cos ^{2} \alpha-\cos ^{2} \beta<1-\frac{1}{2}-\frac{1}{2}=0
$$

In that case $\cos ^{2} \gamma<0$. That's why it doesn't right.

