Answer on Question\#38070 - Math - Calculus

The system becomes

$$
(y z, x z, x y)=\lambda(2 x, 2 y, 0)+\mu(1,0,-1), x^{2}+y^{2}-1=0, x-z=0
$$

or

$$
\left\{\begin{array}{c}
y z=2 \lambda x+\mu \\
x z=2 \lambda y \\
x y=-\mu \\
x^{2}+y^{2}-1=0 \\
x-z=0
\end{array}\right.
$$

Expressing μ from the third and z from the last equation and substituting, we get

$$
\left\{\begin{array}{c}
z=x \\
\mu=-x y \\
2 x y=2 \lambda x \\
x^{2}=2 \lambda y \\
x^{2}+y^{2}-1=0
\end{array}\right.
$$

Next we want to eliminate λ but we have to divide e.g. by x in the third equation. This is only allowed if $x \neq 0$, so we have to treat cases:

1. $x=0$ which yields $\lambda=0$ and $y= \pm 1$, hence two points $(0, \pm 1,0)$. The value of f at both points is 0 .
2. $x \neq 0$ and we get $\lambda=y$, hence $x^{2}=2 y^{2}$ from the $4^{\text {th }}$ equation. Substitution into the last one yields $3 y^{2}=1$ or $y= \pm \frac{1}{\sqrt{3}}$ and $z=x= \pm \sqrt{\frac{2}{3}}$. Here the signs for x and y can be chosen independently and $z=x$ from the first equation. Hence we obtain 4 solutions:

$$
\left(\sqrt{\frac{2}{3}}, \frac{1}{\sqrt{3}}, \sqrt{\frac{2}{3}}\right),\left(\sqrt{\frac{2}{3}},-\frac{1}{\sqrt{3}}, \sqrt{\frac{2}{3}}\right),\left(-\sqrt{\frac{2}{3}}, \frac{1}{\sqrt{3}},-\sqrt{\frac{2}{3}}\right),\left(-\sqrt{\frac{2}{3}},-\frac{1}{\sqrt{3}},-\sqrt{\frac{2}{3}}\right)
$$

leading to the values of f equal to $\pm \frac{2}{3 \sqrt{3}}$. The required minimum is the minimum of the values obtained which is $-\frac{2}{3 \sqrt{3}}$.

