Answer on Question\#37674-Math - Other

If a set A has 3 elements and set B has 4 elements, then number of injections that can be defined from A into B is
a) 144
b) 12
c) 24
d) 64

Solution. Let us consider two sets: $A=\{a, b, c\}$ and $B=\{A, B, C, D\}$.
Recall that a function f is called injective if it never maps distinct elements of its domain to the same element of its codomain. In our case, this means that $f(a) \neq f(b) \neq f(c)$.

Now let us count the number of possible injections.
We start by choosing the value of $f(a)$. There are 4 ways to do this:

1. $f(a)=A$
2. $f(a)=B$
3. $f(a)=C$
4. $f(a)=D$

For every value of $f(a)$, we need to choose the values of $f(b)$ and $f(c)$.
After we have defined $f(a)$, there are 3 ways to define $f(b)$, since $f(b) \neq f(a)$ (e.g. if we define $f(a)=A$, then the possible values for $f(b)$ are $B, C, D)$.

Next, for every pair of values $f(a)$ and $f(b)$, there are $\mathbf{2}$ ways to define $f(c)$.
Finally, to calculate the total number of possible injections, we need to multiply:
$4 \times 3 \times 2=24$.

Answer. C) It is possible to define $\mathbf{2 4}$ injections from A into B.

