Answer on Question \#37546 - Math - Differential Calculus

Let p, t, and r represent the principal, time, and rate of interest respectively. It is given that the principal increases continuously at the rate of $r \%$ per year. So we have

$$
\begin{aligned}
\frac{d p}{d t} & =p\left(\frac{r}{100}\right) \\
\frac{d p}{p} & =\frac{r}{100} d t
\end{aligned}
$$

Integrate both sides

$$
\begin{gathered}
\int \frac{d p}{p}=\int \frac{r}{100} d t \\
\ln p=\frac{r t}{100}+c o n s t=\frac{r t}{100}+k \\
p=e^{\frac{r t}{100}+k}
\end{gathered}
$$

When $t=0, p=100$:

$$
100=e^{0+k}=e^{k}
$$

If $t=10$, then $p=2 \cdot 100=200$:

$$
\begin{gathered}
200=e^{\frac{r}{10}+k} \\
200=e^{\frac{r}{10}} \cdot e^{k}=e^{\frac{r}{10}} \cdot 100 \\
\frac{r}{10}=\ln 2 \\
r=0.6931 \cdot 10=6.931
\end{gathered}
$$

The value of \boldsymbol{r} is $\mathbf{6 . 9 3} \%$.
Consider the second case. Let p and t be the principal and time respectively. It is given that the principal increases continuously at the rate 5\% per year. Then we have

$$
\begin{aligned}
\frac{d p}{d t} & =p\left(\frac{5}{100}\right) \\
\int \frac{d p}{p} & =\int \frac{1}{20} d t \\
\ln p & =\frac{t}{20}+k \\
p & =e^{\frac{t}{20}+k}
\end{aligned}
$$

When $t=0, p=1000$:

$$
1000=e^{0+k}=e^{k}
$$

If $t=10$, then:

$$
\begin{gathered}
p=e^{\frac{1}{2}+k} \\
p=e^{1 / 2} \cdot e^{k}=e^{\frac{1}{2}} \cdot 1000=1.648 \cdot 1000=1648
\end{gathered}
$$

After 10 years the amount will worth s 1648.

