If S and A disjoint then S cant be equal to A because a intersection with A is not empty. B is also disjoint to S then S cant be equal to B.

Suppose that $S=C$ but intersection of B and C is equal to $\{3,5,7,9\}$. so S and B are not disjoint. We get contradiction.

Suppose that $S=D$ then intersection of D and A is $\{102\} /$ so S and A are not disjoint. We get contradiction. And finaly if $S=E$ then intersection of A and S equals to empty set and intersection of B and S equals to empty set. So E can equal to S.

Correct answer is e) E .

