Task. The movement of the crest of a wave is modeled with the equation $h(t)=0.2 \cos 4 t+$ $0.3 \sin 5 t$. Find the maximum height of the wave and the time at which it occurs.

Solution. The maximum of the function $h(t)$ is achieved at some critical point, i.e. a point t such that $h^{\prime}(t)=0$. So one of the ways to find the maximum of h is to compute all critical point of h and the take the maxiaml value of h amont these points. So we should solve the equation

$$
h^{\prime}(t)=0 .
$$

However

$$
h^{\prime}(t)=0.2 * 4 *(-\sin 4 t)+0.3 * 5 * \cos 5 t=-0.8 \sin 4 t+1.5 \cos 5 t
$$

and so the equation is hard to solve, since the frequencies at sin and cos are distinct.
Nevertheless we can use another method. Notice that

$$
\max _{x \in \mathbb{R}} \cos x=\max _{x \in \mathbb{R}} \sin x=1 .
$$

So one of the ways is to find a point \bar{t} such that

$$
\cos 4 \bar{t}=\sin 5 \bar{t}=1
$$

Then

$$
\max h=h(\bar{t})=0.2 * 1+0.3 * 1=0.5
$$

From the equations

$$
\cos 4 \bar{t}=\sin 5 \bar{t}=1
$$

we get

$$
4 \bar{t}=2 \pi k, \quad 5 \bar{t}=\frac{\pi}{2}+2 \pi l=\frac{(4 l+1) \pi}{2}
$$

for some $k, l=0, \pm 1, \pm 2, \ldots$.
Hence

$$
\begin{gathered}
\bar{t}=\frac{\pi k}{2}=\frac{(4 l+1) \pi}{2 * 5} \\
k=\frac{4 l+1}{5} \\
4 l+1=5 k .
\end{gathered}
$$

One of the solutions is $l=1$ and $k=1$. In this case

$$
4 l+1=5 k=5 .
$$

Hence

$$
\bar{t}=\frac{2 \pi k}{4}=\frac{2 \pi * 1}{4}=\frac{\pi}{2} .
$$

In this case

$$
\begin{gathered}
\cos 4 \bar{t}=\cos \frac{4 \pi}{2}=\cos 2 \pi=1 \\
\sin 5 \bar{t}=\sin \frac{5 \pi}{2}=1
\end{gathered}
$$

and so

$$
\max h=h(\bar{t})=0.5
$$

Answer. $\max h=h\left(\frac{\pi}{2}\right)=0.5$.

