Task. The posistion of a particle moving along a coordinate line is $s=\sqrt{4+12 t}$, with s in meters and t in seconds. Find the particle's velocity at $t=1 \mathrm{sec}$.

Solution. By definition, the velocity of a particle whose disposition at time t is given by some function $s(t)$ is equal to $s^{\prime}(t)$:

$$
v(t)=s^{\prime}(t)
$$

In our case

$$
s=\sqrt{4+12 t}
$$

so

$$
v(t)=s^{\prime}(t)(\sqrt{4+12 t})=\frac{(4+12 t)^{\prime}}{2 \sqrt{4+12 t}}=\frac{12}{2 * 2 \sqrt{1+3 t}}=\frac{3}{\sqrt{1+3 t}} .
$$

For $t=1$,

$$
v(1)=\frac{3}{\sqrt{1+3 * 1}}=\frac{3}{\sqrt{4}}=\frac{3}{2}=1.5 \mathrm{~m} / \mathrm{s} .
$$

Answer. $v(1)=1.5 \mathrm{~m} / \mathrm{s}$.

