$$
\sqrt{x^{2}+y^{2}}=\ln \left(x^{2}-y^{2}\right)
$$

Solution.

Domain of the function: $x^{2}-y^{2}>0$
Since the right and left side of the equation are equal, we can present it as a system of equations:

$$
\left\{\begin{array}{c}
\sqrt{x^{2}+y^{2}}=c \\
\ln \left(x^{2}-y^{2}\right)=c
\end{array}\right.
$$

So we introduced the right and left side of the equation as a constant c. This constant $c \geq 0$, because $\sqrt{x^{2}+y^{2}} \geq 0$.

Then solve this system:

$$
\left\{\begin{array}{l}
x^{2}+y^{2}=c^{2} \\
x^{2}-y^{2}=e^{c}
\end{array}\right.
$$

Add these two equations:

$$
\begin{aligned}
& 2 x^{2}=c^{2}+e^{c} \\
& x= \pm \sqrt{\frac{c^{2}+e^{c}}{2}}
\end{aligned}
$$

Then substract these equations:

$$
\begin{aligned}
& 2 y^{2}=c^{2}-e^{c} \\
& y= \pm \sqrt{\frac{c^{2}-e^{c}}{2}}
\end{aligned}
$$

So we have solution of the equation:

$$
\left\{\begin{array}{l}
x= \pm \sqrt{\frac{c^{2}+e^{c}}{2}} \\
y= \pm \sqrt{\frac{c^{2}-e^{c}}{2}}
\end{array}\right.
$$

Find the allowable values of c :

$$
\left\{\begin{array}{l}
\frac{c^{2}+e^{c}}{2} \geq 0 \\
\frac{c^{2}-e^{c}}{2} \geq 0
\end{array}\right.
$$

$$
\left\{\begin{array}{c}
c \in \mathbb{R} \\
c^{2} \geq e^{c}
\end{array}\right.
$$

Solve the inequality $c^{2} \geq e^{c}$ graphically:

We must find a point of intersection c^{2} and e^{c} :

$$
c \approx-0.703467
$$

So

$$
c \leq-0.703467
$$

Answer:

$$
\left\{\begin{array}{l}
x= \pm \sqrt{\frac{c^{2}+e^{c}}{2}} \\
y= \pm \sqrt{\frac{c^{2}-e^{c}}{2}}, c \leq-0.703467
\end{array}\right.
$$

