Task. Suppose $\tan(A - B) = 1$ and $\sec(A + B) = 2/\sqrt{3}$. What is the smallest positive value of B? **Solution.** The identity

$$\tan(A - B) = 1$$

implies that

$$A - B = \frac{\pi}{4} + \pi k, \qquad k \in \mathbb{Z}.$$

Also, from

$$\sec(A+B) = 2/\sqrt{3}$$

we get

$$\frac{1}{\cos(A+B)} = \frac{2}{\sqrt{3}}$$
$$\cos(A+B) = \frac{\sqrt{3}}{2}$$
$$A+B = \pm \frac{\pi}{6} + 2\pi m, \qquad m \in \mathbb{Z}.$$

Hence

$$A + B - (A - B) = \pm \frac{\pi}{6} + 2\pi m - \frac{\pi}{4} - \pi k, \qquad k, m \in \mathbb{Z}.$$

$$2B = \pm \frac{\pi}{6} + 2\pi m - \frac{\pi}{4} - \pi k, \qquad k, m \in \mathbb{Z}.$$

$$B = \pm \frac{\pi}{12} + \pi m - \frac{\pi}{8} - \frac{\pi}{2} k, \qquad k, m \in \mathbb{Z}.$$

$$B = t \frac{\pi}{12} - \frac{\pi}{8} + \frac{\pi}{2} (2m - k), \qquad k, m \in \mathbb{Z}, t = \pm 1.$$

When (k, m) runs over all pairs of integers, the number 2m - k runs over all integers, therefore

$$B = t \frac{\pi}{12} - \frac{\pi}{8} + \frac{\pi}{2}n, \qquad n \in \mathbb{Z}, t = \pm 1.$$

Thus B depends of two parameters (n,t) and we can write it as a function

$$B(k, m, t) = t \frac{\pi}{12} - \frac{\pi}{8} + \frac{\pi}{2}n, \qquad n \in \mathbb{Z}, t = \pm 1.$$

We should find values of (n,t) that give the smallest positive value for B.

$$B(0,1) = \frac{\pi}{12} - \frac{\pi}{8} = \frac{2-3}{24} = -\frac{1}{24} < 0,$$

$$B(0,-1) = -\frac{\pi}{12} - \frac{\pi}{8} = \frac{-2-3}{24} = -\frac{5}{24} < 0,$$

Thus negative values of n will decrease B, and therefore the smallest positive value of B is achieved for positive n:

$$B(1,1) = \frac{\pi}{12} \frac{\pi}{8} + \frac{\pi}{2} = -\frac{1}{24} + \frac{\pi}{2} = \frac{-1+12}{24} = \frac{11}{24},$$

$$B(1,-1) = -\frac{\pi}{12} - \frac{\pi}{8} + \frac{\pi}{2} = -\frac{5}{24} + \frac{\pi}{2} = \frac{-5+12}{24} = \frac{7}{24}.$$

Since for fixed t the number B(n,t) increases with n, the smallest positive value of B is achieved for positive n=1, t=-1, and is equal to

 $\frac{7}{24}$.