1. Find the equation of the plane that passes through the line of intersection of the planes $4 x-3 y-z-1=0$ and $2 x+4 y+z-5=0$ and passes through $\mathrm{A}(1,-3,2)$.
2. Find the equation of the plane that passes through the line of intersection of the planes $4 x-3 y-z-1=0$ and $2 x+4 y+z-5=0$ and parallel to the $\mathrm{x}-$ axis.

Solution:

1. At first, we find two points or line of intersection of the given planes.

Considering the system of their equations and resolving it with respect to x and y we have

$$
\left\{\begin{array} { l }
{ 4 x - 3 y - z - 1 = 0 } \\
{ 2 x + 4 y + z - 5 = 0 }
\end{array} \Rightarrow \left\{\begin{array}{l}
4 x-3 y=1+z \\
2 x+4 y=5-z
\end{array} \Rightarrow x=\frac{19+z}{22}, y=\frac{9-3 z}{11} .\right.\right.
$$

Suppose $z=-19 \Rightarrow x=0, y=6$. It is the first point.
Suppose $z=3 \Rightarrow x=1, y=0$. It is the second point.
So, the plane passes through the points $A(1,-3,2), B(0,6,-19)$ and $C(1,0,3)$.
Using now the corresponding form of the equation of a plane

$$
\left|\begin{array}{ccc}
x-x_{A} & y-y_{A} & z-z_{A} \\
x_{B}-x_{A} & y_{B}-y_{A} & z_{B}-z_{A} \\
x_{C}-x_{A} & y_{C}-y_{A} & z_{C}-z_{A}
\end{array}\right|=0
$$

and substituting our data we get the equation of the desired plane

$$
\left|\begin{array}{ccc}
x-1 & y-6 & z+19 \\
-1 & 9 & -22 \\
0 & 3 & 1
\end{array}\right|=0
$$

2.Consider the vector $\overrightarrow{B C}=(1,-6,22)$, where the points B and C have been found in the previous task, and the direction vector $\vec{s}=(1,0,0)$ of x-axis. And find the normal vector \vec{n} of the plane as $\vec{n}=\vec{s} \times \overrightarrow{B C}$. We'll get

$$
\vec{n}=\left|\begin{array}{ccc}
i & j & k \\
1 & 0 & 0 \\
1 & -6 & 22
\end{array}\right|=0 i-22 j-6 k, \text { so } \vec{n}=(0,-22,-6)
$$

So, the plane passes through the point $B(0,6,-19)$ and has the normal vector $\vec{n}=(0,-22,-6)$. Using then a canonical form of a plane we have

$$
0(x-0)-22(y-6)-6(z+19)=0
$$

$$
11 y+3 z-9=0 .
$$

Answer: $\quad 11 y+3 z-9=0$.

