Question 1. Find the subring of the ring $\mathbb{Z} \times \mathbb{Z}$ that is not an ideal of $\mathbb{Z} \times \mathbb{Z}$.

Solution. Consider the subset

$$D = \{(n,n) \mid n \in \mathbb{Z}\} \subset \mathbb{Z} \times \mathbb{Z}.$$

It is a subring of $\mathbb{Z} \times \mathbb{Z}$. Indeed, it is a subgroup of additive group of $\mathbb{Z} \times \mathbb{Z}$, because

$$(n,n) - (m,m) = (n-m,n-m) \in D$$

for arbitrary $(n, n), (m, m) \in I$. Furthermore, D is closed under multiplication:

$$(n,n)\cdot(m,m) = (nm,nm) \in D$$

for all $(n, n), (m, m) \in I$. Finally, D contains the identity (1, 1) of $\mathbb{Z} \times \mathbb{Z}$. The last fact also shows that D cannot be an ideal of $\mathbb{Z} \times \mathbb{Z}$ because $D \neq \mathbb{Z} \times \mathbb{Z}$. This can be demonstrated by the following observation:

$$(1,1) \cdot (1,0) = (1,0) \notin D,$$

while $(1, 1) \in D$. Answer: for example, $D = \{(n, n) \mid n \in \mathbb{Z}\} \subset \mathbb{Z} \times \mathbb{Z}$.