Answer on Question \#64290-Engineering-Civil and Environmental Engineering

A beam, 3 m long is freely supported at its ends and carries a uniformly distributed load of $2.4 \mathrm{kN} / \mathrm{m}$ run from B to its center. Draw the shearing force and bending moment diagram and give the magnitude and position of the maximum bending moment

Solution

Free-Body-Diagram

The shearing force and bending moment diagram

The magnitude and position of the maximum bending moment: 1.52 kNm at 1.88 m .

1. A beam is in equilibrium when it is stationary relative to an inertial reference frame. The following conditions are satisfied when a beam, acted upon by a system of forces and moments, is in equilibrium:

$$
\Sigma F_{x}=0: \quad H_{B}=0
$$

$\Sigma M_{A}=0:$ The sum of the moments about a point A is zero:

$$
-q_{1} 1.5\left(1.5+\frac{1.5}{2}\right)+R_{B} 3=0
$$

$\Sigma M_{B}=0$: The sum of the moments about a point B is zero:

$$
-R_{A} 3+q_{1} 1.5\left(1.5-\frac{1.5}{2}\right)=0
$$

2. Solve this system of equations:

$$
H_{B}=0(k N)
$$

Calculate reaction of pin support about point B:

$$
R B=\frac{q_{1} 1.5\left(1.5+\frac{1.5}{2}\right)}{3}=\frac{2.4 \cdot 1.5\left(1.5+\frac{1.5}{2}\right)}{3}=2.70(\mathrm{kN})
$$

Calculate reaction of roller support about point A:

$$
R A=\frac{q_{1} 1.5\left(1.5-\frac{1.5}{2}\right)}{3}=\frac{2.4 \cdot 1.5\left(1.5-\frac{1.5}{2}\right)}{3}=0.90(\mathrm{kN})
$$

3. The sum of the forces is zero:

$$
\Sigma F_{y}=0: \quad R_{A}-q_{1} 1.5+R_{B}=0.90-2.4 \cdot 1.5+2.70=0
$$

Draw diagrams for the beam

First span of the beam: $0 \leq x_{1}<1.5$

Determine the equations for the shear force (Q):

$$
\begin{gathered}
Q\left(x_{1}\right)=R_{A} \\
Q 1(0)=0.90=0.90(\mathrm{kN}) \\
Q 1(1.50)=0.90=0.90(\mathrm{kN})
\end{gathered}
$$

Determine the equations for the bending moment (M):

$$
\begin{gathered}
M\left(x_{1}\right)=R_{A}\left(x_{1}\right) \\
M_{1}(0)=0.90(0)=0(\mathrm{kNm}) \\
M_{1}(1.50)=0.90(1.50)=1.35(\mathrm{kNm})
\end{gathered}
$$

Second span of the beam: $1.5 \leq x_{2}<3$

Determine the equations for the shear force (Q):

$$
\begin{gathered}
Q\left(x_{2}\right)=R A-q_{1}\left(x_{2}-1.5\right) \\
Q_{2}(1.50)=0.90-2.40(1.5-1.5)=0.90(\mathrm{kN}) \\
Q_{2}(3)=0.90-2.40(3-1.5)=-2.70(\mathrm{kN})
\end{gathered}
$$

The value of Q on this span that crosses the horizontal axis. Intersection point:

$$
x=0.38
$$

Determine the equations for the bending moment (M):

$$
\begin{gathered}
M\left(x_{2}\right)=R_{A}\left(x_{2}\right)-\frac{q_{1}\left(x_{2}-1.5\right)^{2}}{2} \\
M_{2}(1.50)=0.90(1.50)-\frac{2.40(1.50-1.5)^{2}}{2}=1.35(\mathrm{kNm}) \\
M_{2}(3)=0.90(3)-\frac{2.40(3-1.5)^{2}}{2}=0(\mathrm{kNm})
\end{gathered}
$$

Local extremum at the point $x=0.38$:

$$
M_{2}(1.88)=0.90(1.88)-\frac{2.40(1.88-1.5)^{2}}{2}=1.52(\mathrm{kNm})
$$

Answer provided by https://www.AssignmentExpert.com

