Answer on Question #59473-Engineering-Mechanical Engineering

A vehicle of mass 700 kg accelerates uniformly from rest to a velocity of 60 kmh–1 in 10 s whilst ascending a 15% gradient. The frictional resistance to motion is 0.5 kN. Making use of D'Alembert's principle, determine:

i) the tractive effort between the wheels and the road surface

- ii) the work done in ascending the slope
- iii) the average power developed by the engine

Solution

The picture shows forces acting on the vehicle. There are: the gravitational force $\vec{Q} = m\vec{g}$, the reaction of road's surface \vec{R} and frictional force \vec{F} , working against the vehicle's velocity \vec{v} . The problem's text claims that the vehicle is ascending so the vectors \vec{v} and \vec{F} have directions as in the picture. The vehicle is moved uphill by the tractive force \vec{T} which does the real work. The force \vec{Q} can be split into 2 compounds: $\vec{Q_p}$, perpendicular to

the road surface and $\overrightarrow{Q_t}$ parallel to the road. The vector sum of $\overrightarrow{Q_p} + \overrightarrow{R}$ gives zero but $\overrightarrow{Q_t}$ is that force which causes the frictional resistance.

Using a vector notation one may write the Newton's second law of dynamics for the vehicle as follows:

$$m\vec{a} = \vec{T} + \vec{Q_t} + \vec{F} \tag{1}$$

Because vectors \vec{F} and $\vec{Q_t}$ are opposite to \vec{T} one should take their values with a minus sign in the next equation. In addition because the angle between \vec{Q} and $\vec{Q_p}$ equals α (the same as the slope of the road) the value of $\vec{Q_t}$ may be written as $mg \sin(\alpha)$. Therefore:

$$ma = T - mg \sin \alpha - F \tag{2}$$

From the equation (2) one may calculate the value of the tractive effort *T*. The acceleration a may be calculated as $a = \frac{v}{t}$, where *v* is the given velocity, (v = 100 km/h) and t is the acceleration time (t = 14 s). From eq. (2), substituting a one obtains:

$$T = m\frac{v}{t} + F + mg\sin\alpha \tag{3}$$

Let put numeric values into equation (3). The velocity must be expressed in $\frac{m}{s}$ (by dividing it by 3.6). Sinus α is the "gradient", equals 0.15.

$$T = 700 \cdot \frac{\frac{60}{3.6}}{10} + 500 + 700 \cdot 10 \cdot 0.15 = 2.7 \, kN.$$
 (4)

The work W done in ascending the slope equals T times s, where s is the slope length. (The vector \vec{T} is parallel the road so $cos(\varphi)$ equals 1 in the formula for mechanical work). The length s can be calculated from equation (5)

$$s = \frac{1}{2}at^2 = \frac{1}{2}\frac{v}{t}t^2 = \frac{v}{2}t \qquad (5)$$

The last formula above on the right side shows that in a uniformly accelerating movement the distance s can be calculated by multiplying time by the average velocity. Therefore the amount of work W equals:

$$W = Fs = \frac{Tvt}{2} \tag{6}$$

Using the value of F from eq. (4) the above formula gives:

$$W = 12 \cdot 2.7 \cdot 10^3 \cdot \left(\frac{60}{3.6}\right) \cdot 10 = 225 \, kJ. \tag{7}$$

The average power *P* equals *W* divided by time *t*, therefore:

$$P = \frac{W}{t} = \frac{225kJ}{10s} = 22.5 \, kW.$$
(8)

Answer: 2. 7 kN; 225 kJ; 22. 5 kW.