Answer on Question \#58154-Engineering-Mechanical Engineering

The electric current i flowing in a device varies with time t. The equation linking the two variables is as follows.
$\mathrm{i}=2 \sin (5 \mathrm{t})$

The area under the graph represents the charge q that has passed over any given time interval.
Calculate the area and hence the charge by integrating the equation between $\mathrm{t}=\mathrm{t} 1$ and $\mathrm{t}=\mathrm{t} 2$
$\mathrm{t} 1=0.4$
t2 $=0.5$

Solution

$$
\begin{aligned}
\Delta Q=\int_{t_{1}}^{t_{2}} i(t) d t & =\int_{0.4}^{0.5} 2 \sin (5 \mathrm{t}) d t=\frac{2}{5} \int_{0.4}^{0.5} \sin (5 \mathrm{t}) d(5 t)=\frac{2}{5}(-\cos 5 t)_{0.4}^{0.5}=\frac{2}{5}(\cos 2-\cos 2.5) \\
& =0.154 C .
\end{aligned}
$$

Answer: 0.154 C

