Answer on Question \#85474 - Chemistry - General Chemistry

Task:

How many grams of O_{2} are needed to react with 57.3 g of NH_{3} ?

Solution:

The balanced equation for reaction when ammonia burns in oxygen can be written as follows $4 \mathrm{NH}_{3}(g)+3 \mathrm{O}_{2}(g) \rightarrow 2 \mathrm{~N}_{2}(g)+6 \mathrm{H}_{2} \mathrm{O}(I)$
$\frac{m\left(\mathrm{NH}_{3}\right)}{M\left(4 \mathrm{NH}_{3}\right)}=\frac{m\left(\mathrm{O}_{2}\right)}{M\left(3 \mathrm{O}_{2}\right)}$
$m\left(\mathrm{O}_{2}\right)=\frac{m\left(\mathrm{NH}_{3}\right) \cdot M\left(3 \mathrm{O}_{2}\right)}{M\left(4 \mathrm{NH}_{3}\right)}$
$M\left(4 \mathrm{NH}_{3}\right)=4 \cdot(14+3 \cdot 1)=68 \mathrm{amu}$
$M\left(3 \mathrm{O}_{2}\right)=3 \cdot(2 \cdot 16)=96 \mathrm{amu}$
$m\left(O_{2}\right)=\frac{57.3 \cdot 96}{68} \approx 80.9 \mathrm{~g}$

From the other hand, the balanced equation for reaction when ammonia burns in air can be written as follows
$4 \mathrm{NH}_{3}(g)+5 \mathrm{O}_{2}(g) \rightarrow 4 \mathrm{NO}(g)+6 \mathrm{H}_{2} \mathrm{O}(\mathrm{l})$

$$
\begin{aligned}
& \frac{m\left(\mathrm{NH}_{3}\right)}{M\left(4 \mathrm{NH}_{3}\right)}=\frac{m\left(\mathrm{O}_{2}\right)}{M\left(5 \mathrm{O}_{2}\right)} \\
& m\left(\mathrm{O}_{2}\right)=\frac{m\left(\mathrm{NH}_{3}\right) \cdot M\left(5 \mathrm{O}_{2}\right)}{M\left(4 \mathrm{NH}_{3}\right)} \\
& M\left(4 \mathrm{NH}_{3}\right)=4 \cdot(14+3 \cdot 1)=68 \mathrm{amu} \\
& M\left(3 \mathrm{O}_{2}\right)=5 \cdot(2 \cdot 16)=160 \mathrm{amu} \\
& m\left(\mathrm{O}_{2}\right)=\frac{57.3 \cdot 160}{68} \approx 134.8 \mathrm{~g}
\end{aligned}
$$

Answer:

80.9 g (for ammonia burning in oxygen) or 134.8 g (for ammonia burning in air)

