Task\#85459

calculate and show solving if the quantity of oxygen occupying a 2.76 litre container at a pressure of $\mathbf{0 . 8 2 5}$ atmosphere and 300 k is reduced by onehalf, what is the pressure exerted by the remaining gas.
Solution: Temperature of the system(T)=300K
Volume of the system (V)=2.76 lit
Pressure of the system $(\mathrm{P})=0.825 \mathrm{~atm}$
Ideal gas law , $\mathrm{PV}=\mathrm{nRT}, \mathrm{n}=\frac{P V}{R T}, \mathrm{n}=\frac{0.825 \times 2.76}{0.082 \times 300}=0.0923 \mathrm{~mol}$,
If the quantity of gases is reduced to one half of initial amount then, number of moles of gas $(\mathrm{n})=0.04615$

Final pressure will be $\mathrm{P}=\mathrm{P}$ (initial)/2 since Temperature and volume of the system is kept constant. P (final) $=0.4125 \mathrm{~atm}$,

