Question \#84763, Chemistry / General Chemistry

Question:

A 3.09 L flask is filled with propane gas $\left(\mathrm{C}_{3} \mathrm{H}_{8}\right)$ at 1.00 atm and $-16.4^{\circ} \mathrm{C}$. What is the mass of the propane in the flask?

Solution:

The mass of the propane in the flask can be calculated from the Clapeyron-Mendeleev equation:

$$
P V=\frac{m}{M} R T
$$

where P - gas pressure, V - gas volume (in liters); T - gas temperature (in Kelvins); R - gas constant ($0.08211 \times \mathrm{atm} / \mathrm{mol} \times \mathrm{K}$), m - mass of gas, $\mathrm{M}-$ molar mass of gas in $\mathrm{kg} / \mathrm{mol}$.
The mass of propane can be calculated from the equation:

$$
m=\frac{P V M}{R T}
$$

$\mathrm{T}=\left(-16.4^{\circ} \mathrm{C}\right)+273.15 \mathrm{~K}=256.75 \mathrm{~K}$
$\mathrm{M}\left(\mathrm{C}_{3} \mathrm{H}_{8}\right)=(\mathrm{Am}(\mathrm{C}) \times 3)+(\mathrm{Am}(\mathrm{H}) \times 8)=12 \times 3+1 \times 8=44 \mathrm{~g} / \mathrm{mol}=4,4 \mathrm{~kg} / \mathrm{mol}$

$$
m=\frac{1.00 \mathrm{~atm} \times 3.09 \mathrm{l} \times 4.4 \mathrm{~kg} / \mathrm{mol}}{0.0821 \frac{\text { atm }}{\text { molK }} \times 256.75 \mathrm{~K}}=0.645 \mathrm{~kg}
$$

Answer:
The mass of propane in flask is 0.645 kg or 645 g .

