Question \#84761, Chemistry / General Chemistry

A 3.09 L flask is filled with propane gas (C3H8) at 1.00 atm and -16.4 C . What is the mass of the propane in the flask?

Solution

The ideal gas law states:
$P V=v R T$, where $v-$ the amount of gas in moles;
$\mathrm{PV}=\frac{m}{m} \mathrm{RT}$
$\mathrm{m}=\frac{P V M}{R T}$, where $\mathrm{P}=101.3 \mathrm{kPa} ; \mathrm{T}=256.75 \mathrm{~K} ; \mathrm{V}=3.09 \times 10^{-3} \mathrm{~m}^{3} ; \mathrm{R}=8.314 \mathrm{~m}^{3} \times \mathrm{Pa}^{2} \times \mathrm{mol}^{-1} \times \mathrm{K}^{-1}$
$\mathrm{m}=\frac{101.3 \times 10^{3} \times 3.09 \times 10^{-3} \times 44.1}{8.314 \times 256.75}=6.47(\mathrm{~g})$

Answer

6.47 g is the mass of the propane in the flask.

Answer provided by www.AssignmentExpert.com

