Bronze is an alloy made of copper (Cu) and tin (Sn). Calculate the mass of a bronze cylinder of radius 9.85 cm and length 41.00 cm . The composition of the bronze is 79.42 percent Cu and 20.58 percent Sn and the densities of Cu and Sn are $8.94 \mathrm{~g} / \mathrm{cm} 3$ and $7.31 \mathrm{~g} / \mathrm{cm} 3$, respectively. What assumption should you make in this calculation? Enter your answer in scientific notation.

Solution. We assume that the alloy is at a certain temperature, say, for example, at room temperature, so that the densities remain constant. That is, the calculation is made for a temperature of +20 degrees Celsius.
In this case, given: $\rho_{\mathrm{Cu}}=8.94 \frac{\mathrm{~g}}{\mathrm{~cm}^{3}}, \rho_{\mathrm{Sn}}=7.31 \frac{\mathrm{~g}}{\mathrm{~cm}^{3}}, \mathrm{w} \mathrm{Cu}=79.42 \%, \mathrm{w}_{\mathrm{sn}}=20.58 \%$.
The density of the alloy is calculated as follows: $\rho=\frac{m_{C u}+m_{S n}}{\frac{m_{C u}}{\rho_{C u}}+\frac{m_{S n}}{\rho_{S n}}}$. Take the ratio: $\alpha=\frac{m_{C u}}{m_{S n}}=\frac{w_{C u}}{w_{S n}}=$ $\frac{79.42}{20.58}=3.86$, then $\rho=\frac{3.86+1}{\frac{3.86}{\rho_{C u}}+\frac{1}{\rho_{S n}}}=\frac{4.86}{\frac{3.86}{8.94}+\frac{1}{7.31}}=8.68 \frac{\mathrm{~g}}{\mathrm{~cm}^{3}}$.
Find the volume of the cylinder according to the formula: $\mathrm{V}=\pi \mathrm{r}^{2} \mathrm{~h}=3.14 \times(9.85)^{2} \times 41=12491 \mathrm{~cm}^{3}$. Find the mass of the bronze cylinder: $\mathrm{m}=\rho \mathrm{V}=8.68 \times 12491=108421.88 \mathrm{~g}$, or 108.422 kg .
Answer: the mass of the bronze cylinder is 108.422 kg at $20^{\circ} \mathrm{C}$.

