Question \#84463, Chemistry / General Chemistry

How many molecules of hydrogen gas are formed when 24.6 g of sodium are added to water. Show your work.
$2 \mathrm{Na}+2 \mathrm{H} 2 \mathrm{O}$--> $2 \mathrm{NaOH}+\mathrm{H} 2$

Solution

According to the reaction equation 1 mole of hydrogen releases when 2 moles of sodium react with 2 moles of water. Find the amount of sodium given in the task:
$\mathrm{v}(\mathrm{Na})=\frac{m}{M}=\frac{24.6}{23}=1.07(\mathrm{~mol})$
Thus the amount of hydrogen is:
$v\left(\mathrm{H}_{2}\right)=\frac{1.07}{2}=0.535(\mathrm{~mol})$
According to Avogadro Law 1 mole of any gas contains 6.022×10^{23} particles, so find the number of particles in the given amount of hydrogen:
$\mathrm{N}=0.535 \times 6.022 \times 10^{23}=\mathbf{3 . 2 2 \times 1 0 ^ { 2 3 }}(\mathrm{m}$.

Answer

3.22×10^{23} molecules of hydrogen gas are formed when 24.6 g of sodium are added to water.

